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 A B S T R A C T

Accurate Estimated Time of Arrival (ETA) prediction is critical to the air traffic management system including 
aircraft sequencing for which Air Traffic Controllers (ATCs) are responsible. Although significant advancements 
have been achieved in both ETA prediction and arrival sequencing, the development of decision support tools 
can be further improved by learning the expertise of ATCs and reflecting on their practical considerations. 
To fill the research gap, in this paper, we propose a multi-agent model for both ETA prediction and arrival 
sequencing based on the attention mechanism that can account for the current air traffic situation and capture 
the decisions made by ATCs. The proposed model is demonstrated with real air traffic surveillance data 
recorded at Incheon International Airport in South Korea and compared with existing models in terms of 
ETA prediction, sequence similarity, and arrival sequencing performance. The experimental results show that, 
in a real-time manner, the proposed model can provide landing sequences more acceptable to ATCs as well 
as more accurate ETAs than those of comparison models. Specifically, sequence similarity is measured by two 
rank correlation coefficients, which shows the superiority of the proposed model in emulating ATC decisions. 
Furthermore, important considerations in arrival sequencing are discussed based on actual ATC feedback.
. Introduction

The Air Traffic Management (ATM) system encompasses complex 
nd safety-critical operations which are mainly managed by Air Traffic 
ontrollers (ATCs) and pilots to ensure safety and efficiency. This air 
raffic operation becomes more complex and challenging as demands 
ontinue to increase. Indeed, the demand for air transport is expected 
o increase by an average of 4.3% annually over the next 20 years, and 
he projected number of flights is expected to reach around 90 million 
y 2040 (ICAO, 2019). This continuous growth of demands can lead 
o an excessive workload for both ATCs and pilots, thereby resulting 
n the degradation of the ATM system. To effectively respond to this 
roblem, a lot of effort has been put into developing decision support 
ools.
One of the tasks where such a decision support tool is most needed 

s arrival sequencing which has a significant impact on the efficiency 
f the overall ATM system in minimizing delays. This task is a crucial 
ecision-making process to determine a landing sequence for multiple 
ncoming aircraft, facilitating the timely and orderly arrival of aircraft 

I This paper is an extension of work originally presented in DASC 2023 (Choi et al., 2023b).
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to their designated destinations. The primary objectives of arrival se-
quencing are to optimize traffic flow, alleviate congestion, and improve 
airspace safety. To achieve these objectives, Arrival Manager (AMAN) 
was developed, which assists ground-based ATCs in establishing safe 
and efficient arrival sequences to a designated airport (Eurocontrol, 
2010). The tool, AMAN, works in two main steps. Initially, Estimated 
Time of Arrival (ETA) prediction is performed for each aircraft based 
on current states. Subsequently, the optimal sequence of arrivals builds 
on the ETAs of the arriving aircraft, aiming to minimize overall flight 
delays and/or maximize airport throughput, while maintaining safety.

To develop arrival sequencing models for AMAN, various
approaches have been taken in the existing literature. Beasley et al. 
(2000) formulated aircraft sequencing and scheduling for landings as 
a mixed integer linear programming problem. The study aimed to 
identify the optimal sequence of arrivals and individual landing times 
for various runway configurations. Due to the complexity of finding the 
optimal solution, arrival sequencing is known as an NP (Nondeterminis-
tic Polynomial time)-hard problem. For practical applications, heuristic 
ttps://doi.org/10.1016/j.jairtraman.2025.102828
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data mining, AI training, and similar technologies. 
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approaches have instead been adopted to find a near-optimal sequence 
of arrivals. To efficiently find feasible arrival sequences, Ernst et al. 
(1999) proposed a specialized simplex algorithm with a metaheuristic. 
In addition, the Genetic Algorithm (GA) was widely used to generate 
nearly optimal solutions within a reasonable time (Beasley et al., 2001; 
Salvatore and Ignaccolo, 2004). Furthermore, Hancerliogullari et al. 
(2013) proposed metaheuristics using greedy algorithms as initial solu-
tions, which results in better performance for the real-world application 
of the aircraft sequencing problem.

Recognizing the dynamic nature of the ATM environment and the 
practical issues that affect actual operations, various new approaches to 
arrival sequencing have been proposed. Dear (1976) and Balakrishnan 
and Chandran (2006) proposed Constrained Position Shifting (CPS) 
based on a practical consideration. CPS is initialized with First-Come 
First-Served (FCFS) sequences of arrivals and only allows a predefined 
number of position shifts from FCFS orders, which is determined by 
sorting ETAs. To address the issues that arise in the dynamic envi-
ronment near terminal airspace, dynamic arrival sequencing has been 
solved based on the displacement problem (Beasley et al., 2004) or the 
Receding Horizon Control (RHC) algorithm (Hu and Chen, 2005). Ben-
nell et al. (2017) proposed to use dynamic programming and local 
search heuristics to solve the dynamic problem, which requires periodic 
updates to the previous arrival sequence with the newly available 
aircraft.

Although previous studies have shown great progress and their op-
timization tools have helped ATCs, the actual arrival sequence adopted 
by ATCs often deviates from that presented by optimization algorithms. 
This can be explained by the limitations of existing algorithms that do 
not fully accommodate the decision-making processes of ATCs and/or 
the dynamic nature of the environment (Tang and Abbass, 2014; Jung 
et al., 2018). To address this practical issue, data-driven approaches 
have been adopted. Tang and Abbass (2014) employed a probabilis-
tic finite-state machine and GA to derive ATC heuristics for aircraft 
sequencing with simulated aircraft data. In the recent study (Jung 
et al., 2018), Pairwise Preference Learning (PPL) was proposed to 
directly accommodate the cognitive processes of actual ATCs, which 
are important for practical application to actual operations. However, 
PPL has insufficient capabilities to capture the dependence that the 
landing order of each aircraft is affected by the ordering decisions of 
other aircraft, and its computational burden to consider all possible 
pairs increases quadratically as the number of aircraft increases.

Moreover, existing studies perform ETA prediction and arrival se-
quencing separately, as AMAN works. Consequently, the performance 
of arrival sequencing is greatly dependent on the accuracy of ETA 
prediction models. Du et al. (2023) showed that a more accurate ETA 
prediction can contribute to reducing the average delay and dwell 
time as well as the deviation from the actual landing sequence. In this 
regard, various data-driven models have been used to improve the ac-
curacy of the ETA prediction. Gui et al. (2021) utilized the conventional 
machine learning algorithm (i.e., extreme gradient boosting), and Wang 
et al. (2020b) proposed the automated method that stacks multiple 
existing models. In addition, the neural network-based approach has 
been widely used, such as recurrent neural network (Ayhan et al., 
2018), bidirectional long short-term memory (Wang et al., 2020a), 
spatiotemporal neural network (Ma et al., 2022), and clustering-based 
deep neural network (Deng et al., 2023). However, despite these ad-
vancements, existing works have focused only on the single-agent ETA 
prediction model that assumes each aircraft to be independent and 
neglects the effects of neighboring aircraft and air traffic control in 
congested terminal airspace.

Therefore, to address the aforementioned limitations, this paper 
proposes a multi-agent model as a decision support system for two 
intertwined problems: ETA prediction and arrival sequencing. Firstly, 
we employ the attention mechanism to better understand the interde-
pendencies of multiple aircraft and emulate ATC’s decisions in arrival 
sequencing. By incorporating the separation constraint into the loss 
2 
function and utilizing a novel mixed training strategy, a single model 
can accommodate both ETA prediction and arrival sequencing, result-
ing in better performance in each task. Moreover, this multi-agent 
model helps avoid the generation of unrealistic arrival sequences that 
result from the combination of errors in the ETA prediction model 
and inaccurately allowed deviations in the sequencing model. The 
performance of the proposed model is demonstrated with extensive 
experiments on both ETA prediction and arrival sequencing and ana-
lyzed in terms of various metrics. Furthermore, blind tests with actual 
ATCs as subjects and their feedback reveal important considerations 
that traditional optimization-based algorithms can fail to reflect.

The remainder of this paper is organized as follows. Section 2 
describes the specific problem, domain background, and data prepara-
tion for this study. Section 3 presents the preliminary of the attention 
mechanism and then proposes the multi-agent model to emulate ATCs’ 
decisions. In Section 4, the performance of the proposed model is 
evaluated using the dataset prepared in Section 2 and analyzed in 
terms of ETA prediction, sequence similarity, and arrival sequencing, 
respectively. Lastly, the paper concludes with a summary of the findings 
and outlines potential future research in Section 5.

2. Problem description

In this section, we first clarify the air traffic problems (ETA pre-
diction and arrival sequencing) studied in this paper. Secondly, we 
describe the data used for our data-driven model and domain knowl-
edge regarding the specific terminal airspace, where the data was 
collected.

2.1. Problem statement

This paper focuses on providing a realistic landing sequence and 
corresponding arrival times for multiple aircraft in terminal airspace, 
designed to function as a decision support system for ATCs. Specifically, 
two intertwined problems (i.e., ETA prediction and arrival sequencing) 
are addressed at once. By taking the state and traffic information as 
input (e.g., position, speed, and travel time), the generated advisories 
reflect ATC decisions and practical considerations by emulating ATCs 
from past operations recorded in the historical dataset. In addition, 
this paper considers dynamic scenarios in which the number of aircraft 
keeps changing over time, requiring iterative updates in real time.

This problem necessitates a new approach as shown in Fig.  1, while 
the existing approach solves the ETA prediction and arrival sequencing 
problems sequentially. In the existing approach, the track points of 
each aircraft are fed into an ETA prediction model. Once all the ETAs 
are computed and collected, they are then utilized for a sequencing 
algorithm to determine the optimal sequence of arrivals for the current 
air traffic situation. In contrast, on the right side, all the track points of 
multiple aircraft are directly fed into one multi-agent model trained 
for implicitly learning ATC intentions and decisions through agent 
interactions.

2.2. Data preparation

In this paper, we collect and utilize the arrival trajectories at In-
cheon International Airport (ICN), South Korea, recorded in the Auto-
matic Dependent Surveillance-Broadcast (ADS-B) data between January 
and May 2019. We also take advantage of Aeronautical Information 
Publication (AIP) data in conjunction with the ADS-B data. The ADS-B 
data consists of various aircraft states such as longitude, latitude, alti-
tude, ground speed, vertical speed, and course angle, as well as flight 
information and time. In order to focus on the terminal airspace oper-
ation, we extract regulation and domain knowledge from the AIP data. 
For instance, entry fixes, Standard Terminal Arrival Routes (STARs), 
and instrument approach procedures are denoted with the triangle 
markers and white dotted lines in Fig.  2. Around ICN, there are four 
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Fig. 1. Comparison between existing and new approaches to the arrival sequencing problem.
Fig. 2. Illustration of historical aircraft trajectories and entry fixes in ICN terminal airspace.
different entry fixes to enter terminal airspace, i.e., KARBU, GUKDO, 
OLMEN, and REBIT. Aircraft entering through KARBU are predomi-
nantly from North America, whereas those passing through GUKDO 
generally come from Oceania and Japan. Aircraft passing through 
REBIT typically originate from Europe and China, while those travers-
ing OLMEN come from Southeast Asia and Jeju. Upon crossing one of 
four entry fixes, sector controllers hand off each aircraft to approach 
controllers.

Firstly, we process each aircraft trajectory for ETA prediction and 
arrival sequencing. In terminal airspace, we limit the length of the 
trajectories from the Final Approach Fix (FAF) to 70 nmi from the 
airport. The distance of 70 nmi is determined as the extended distance 
before entering terminal airspace through the four entry fixes. The data 
point at the FAF is used as the arrival time instead of landing at the 
runway due to the lack of recorded data near the airport, which makes 
the actual landing time unavailable. This is because most of the last 
data points are recorded before the actual aircraft lands on the runway, 
whereas few of them have data points on the runway. Therefore, to 
unify them to the same point, we enforce the last data point of all data 
to end at the FAF and set the time as the arrival time. Additionally, 
although the ADS-B data provides flight information which includes 
aircraft types and call signs, there are so many different kinds, which 
makes it difficult for data-driven models to understand the relationship 
between neighboring aircraft. Instead, using the Wake Turbulence Cat-
egory (WTC), which prescribes the minimum separation requirement 
between aircraft, the aircraft can be categorized and labeled with one 
3 
of five categories (super, heavy, medium, light, and unknown case). In 
addition, to account for the aircraft’s travel time in terminal airspace, 
we compute the travel time as the time flown in terminal airspace, 
starting at zero when the aircraft is 70 nmi away from the airport. 
Therefore, along with the state information (position, speed, and course 
angle), the travel time and the WTC information are also used for model 
training to improve the accuracy of the model. Therefore, each aircraft 
trajectory includes a total of 8 features with a 10-s interval.

Additionally, the recorded ADS-B data need to be preprocessed to 
resolve irregular sampling rates, which typically range from 20 to 60 s. 
The remaining trajectories are then reconstructed using a regularized 
least-squares optimization (Barratt et al., 2018; Deng et al., 2024b), 
which is equivalent to solving the optimization problem: 
minimize

𝑃
‖𝐻𝑃 − 𝑃‖2𝐹 + 𝜆1‖𝐷2𝑃‖

2
𝐹 + 𝜆2‖𝐷3𝑃‖

2
𝐹 (1)

where the optimization variable 𝑃 ∈ R𝐿×3 is the reconstructed trajec-
tory of length 𝐿, and 𝑃  is the measurement matrix. 𝐻 is a diagonal 
matrix to indicate whether the data is measured or not at a given 
time. 𝐷2 and 𝐷3 are second-order and third-order difference matrices, 
respectively. 𝜆1 and 𝜆2 are regularization hyper-parameters. As a result, 
it is observed that the reconstructed trajectories in Fig.  2(b) are smooth 
and have a constant sampling rate compared to the originally recorded 
trajectories in Fig.  2(a).

Lastly, for a multi-agent system, we need to collect multiple aircraft 
trajectories at each time instance in the form of a traffic scene (i.e., a 
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sample). Herein, to account for dynamically changing traffic, we set 
the time window for observation to 2 min. In other words, we utilize 
each aircraft’s trajectory from two minutes ago to the present to predict 
its ETA at the current time. From the collected dataset, we exclude 
traffic scenes that contain three cases: (i) go-around, (ii) diversion, and 
(iii) separation violation. These cases could significantly deteriorate the 
performance of the ETA prediction due to abnormal flight times caused 
by multiple approach and landing attempts or landing at different 
nearby airports. Furthermore, we consider traffic situations where only 
one runway (runway 15L or runway 33R) is open for arrival flights. The 
dataset is split into two subsets based on the landing direction: flights 
heading southbound and northbound to ICN. A total of 11,398 and 
17,738 samples are collected for the northwest and southeast datasets. 
In each case, 80% are randomly selected for training, while 10% each 
is used for validation and testing, respectively.

3. Methodology

In this section, we first summarize the attention mechanism that 
is the basis for the proposed approach. Secondly, the proposed multi-
agent model (in Fig.  3) is explained in detail, especially focusing on 
agent-aware attention and mixed training strategy.

3.1. Attention mechanism

In natural language processing or neural machine translation, the 
attention mechanism is a powerful technique that can address the 
issue when considering the entire context of a long input sequence. 
This mechanism can give more importance to specific and relevant 
parts of the input sequence while making predictions. For example, 
the standard attention mechanism selectively attends to specific words 
in a sentence or parts of an image by mimicking the human attention 
process.

Especially, for self-attention, the scaled dot-product attention func-
tion is introduced in the attention layer within the Transformer ar-
chitecture (Vaswani et al., 2017). The self-attention function works 
by creating three vectors from the encoded input sequence: queries, 
keys, and values. In the ETA prediction application, queries work like 
questions about the relevance between a specific track point and other 
observations (position, speed, and course angle) that can help predict 
the ETA. Keys represent all other points being compared to the current 
point, and values contain the actual information associated with each 
point in the input sequence for ETA prediction. An attention function 
takes a query and a set of key–value pairs as input and computes the dot 
product between the query and all keys, followed by scaling the result 
down by √𝑑𝑘, where 𝑑𝑘 represents the square root of the dimension of 
the key vectors. This scaling is crucial to prevent numerical instability 
caused by large dot products. Subsequently, a softmax function is 
applied to the compatibility function (the dot product between the 
query and the key vectors) to derive the relevance weights on the 
values. In practice, as an attention function operates on a set of queries 
concurrently, the queries, keys, and values are arranged into matrices 
denoted as 𝑄, 𝐾, and 𝑉 , respectively. The scaled dot-product attention 
can be expressed as 

Attention(𝑄,𝐾, 𝑉 ) = softmax
(

𝑄𝐾𝑇
√

𝑑𝑘

)

𝑉 (2)

Finally, the mechanism generates an output that summarizes the most 
important information from the input sequence for the current predic-
tion.

The multi-head attention function extends the capabilities of the 
scaled dot-product attention by projecting the queries, keys, and val-
ues linearly into multiple subspaces. This technique allows the deep 
learning model to attend to and integrate information from various 
representation subspaces and positions. In the case of ETA prediction, 
using multiple attention heads allows the model to focus on various 
4 
Fig. 3. The proposed neural network structure.  (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.)

aspects such as speed changes, altitude fluctuations, and trajectory pat-
terns, which can enhance ETA accuracy by providing a more detailed 
representation of the input sequence. When the attention function is 
executed in parallel, the results are concatenated and subsequently 
projected again, providing the final values. 
MultiHead(𝑄,𝐾, 𝑉 ) = Concat(ℎ𝑒𝑎𝑑1,⋯ , ℎ𝑒𝑎𝑑𝑚)𝑊 𝑂 (3)

where ℎ𝑒𝑎𝑑ℎ = Attention(𝑄𝑊 𝑄
ℎ , 𝐾𝑊 𝐾

ℎ , 𝑉 𝑊 𝑉
ℎ ), ℎ ∈ {1, 2,⋯ , 𝑚}, and 𝑚

is the total number of heads. 𝑊 𝑂, 𝑊 𝑄
ℎ ,𝑊 𝐾

ℎ ,𝑊 𝑉
ℎ  are weight matrices.

3.2. Proposed multi-agent model

To address the air traffic problem in Section 2.1, we propose to em-
ulate ATC’s decision-making process under various airspace conditions 
by adopting a multi-agent system based on the attention mechanism. 
Given air traffic situations, ATCs monitor aircraft operations and decide 
their landing orders by comparing neighboring aircraft based on several 
factors, such as priority, relative position, aircraft type, and arrival 
time. In this regard, imitating ATC requires a multi-agent system that 
can understand the air traffic situation and let each aircraft perceive 
itself differently from other nearby aircraft. To achieve this goal, we 
utilize the agent-aware attention function proposed in Yuan et al. 
(2021).

While the attention mechanism mentioned in the previous subsec-
tion does not have any notion of temporal and social dimensions which 
are important in multi-agent systems, agent-aware attention takes both 
dimensions into account simultaneously. Agent-aware attention is de-
signed to maintain agent identities and recognize the properties of 
other agents by distinguishing between the elements of the same agent 
and the elements of other agents. Similar to the scaled dot-product 
attention, the agent-aware attention mechanism takes keys 𝐾, queries 
𝑄, and values 𝑉  as input. The output of the agent-aware attention 
function is computed as

AgentAwareAttention(𝑄,𝐾, 𝑉 ) = softmax
(

𝐴
√

)

𝑉 (4)

𝑑𝑘
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Fig. 4. Illustration of the agent-aware attention mechanism in an air traffic scene by attending to the ego agent (in red) and other agents (in sky blue) differently.  (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.)
𝐴 = 𝑀 ⊙ (𝑄𝑠𝑒𝑙𝑓𝐾
𝑇
𝑠𝑒𝑙𝑓 ) + (1 −𝑀)⊙ (𝑄𝑜𝑡ℎ𝑒𝑟𝐾

𝑇
𝑜𝑡ℎ𝑒𝑟) (5)

𝑄𝑠𝑒𝑙𝑓 = 𝑄𝑊 𝑄
𝑠𝑒𝑙𝑓 , 𝑄𝑜𝑡ℎ𝑒𝑟 = 𝑄𝑊 𝑄

𝑜𝑡ℎ𝑒𝑟 (6)

𝐾𝑠𝑒𝑙𝑓 = 𝐾𝑊 𝐾
𝑠𝑒𝑙𝑓 , 𝐾𝑜𝑡ℎ𝑒𝑟 = 𝐾𝑊 𝐾

𝑜𝑡ℎ𝑒𝑟 (7)

where 𝑀 is a masking matrix in which 𝑀𝑖𝑗 equals to one if the 𝑖th 
query 𝑞𝑖 and 𝑗th key 𝑘𝑗 belong to the same agent, and 𝑀𝑖𝑗 equals 
to zero otherwise. In other words, this masking technique enables 
the computation of the attention weight matrix (𝐴 in Fig.  3) to be 
calculated differently depending on whether the 𝑖th query and the 𝑗th 
key belong to the same agent. ⊙ denotes element-wise product and 
𝑊 𝑄

𝑠𝑒𝑙𝑓 ,𝑊
𝐾
𝑠𝑒𝑙𝑓 ,𝑊

𝑄
𝑜𝑡ℎ𝑒𝑟,𝑊

𝐾
𝑜𝑡ℎ𝑒𝑟 ∈ R𝑛×𝑑𝑘  are trainable parameters. 𝑛 is the 

number of agents.
Fig.  4 illustrates how agent-aware attention works to preserve agent 

identities. In the traffic scene, four aircraft are heading northwest for 
landing and the observed trajectories are depicted as a series of dots 
(𝑡 = 1,⋯ , 𝑇 ). As shown in Fig.  3, in the matrix 𝐴, the elements (red) 
whose 𝑖th query and 𝑗th key belong to the same agent are represented 
by different colors than those (blue sky) whose 𝑖th query and 𝑗th key 
belong to different agents. This indicates that the ego agent can pay 
attention to its own trajectory and the trajectories of other agents in 
another way for its prediction. On the left in Fig.  4, the ego agent with 
the arrow is more attending to its current track point (𝑡 = 𝑇 ) among 
its entire track points and more attending to the closest neighboring 
agent among the other agents. On the other hand, in the right plot, 
the ego agent in the east pays attention to the preceding aircraft 
during the approach, rather than the closest neighboring agent. This 
implies that the level of attention is closely related to the landing 
order in determining arrival time. Therefore, based on agent-aware 
attention, each agent is able to perceive its own identity and selectively 
attend to the more relevant information from its neighbors, capturing 
multi-agent interactions for the arrival sequencing problem.

For the arrival sequencing problem, the proposed multi-agent model 
first takes multiple trajectories in the traffic scene as an input sequence:
𝑋 = (𝑥11,⋯ , 𝑥𝑛1,⋯ , 𝑥𝑙𝑡 ,⋯ , 𝑥1𝑇 ,⋯ , 𝑥𝑛𝑇 ) (8)

where 𝑥𝑙𝑡 ∈ R𝑑𝑓  is observed features of agent 𝑙 at timestep 𝑡 and 
𝑑𝑓  is the number of features. Specifically, in this paper, 𝑋 is repre-
sented as multi-agent trajectories with 𝑛 agents, 12 timesteps, and 8
features per timestep. Subsequently, agent-aware attention can help the 
proposed model practically assign each aircraft an individual arrival 
time by maintaining agent identities and understanding multi-agent 
interactions. Therefore, an output sequence is given as: 
𝑌 = (𝑦̂1,⋯ , 𝑦̂𝑛) (9)

where 𝑦̂  is an ETA of aircraft 𝑙 at the current timestep 𝑇 .
𝑙

5 
To ensure that assigned times satisfy the appropriate separation 
between multiple aircraft for arrival sequencing, we propose to use 
the combined loss function by adding separation loss to Mean Squared 
Error (MSE) loss during training. The separation loss acts as a soft 
constraint to impose the separation requirement between leading and 
trailing aircraft. To train the model, we propose to use the com-
bined loss function by adding separation loss to Mean Squared Error 
(MSE) loss. The separation loss acts as a soft constraint to impose the 
separation requirement between leading and trailing aircraft.
𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 𝜔𝑀𝑆𝐸 + (1 − 𝜔)𝑠𝑒𝑝 (10)

𝑀𝑆𝐸 = 1
𝑛

𝑛
∑

𝑙=1
(𝑦𝑙 − 𝑦̂𝑙)2 (11)

𝑠𝑒𝑝 =
∑

𝑝,𝑞
𝑔(𝑦̂𝑝, 𝑦̂𝑞) (12)

𝑔(𝑦̂𝑝, 𝑦̂𝑞) =

{

𝑇𝑠𝑒𝑝 − |𝑦̂𝑝 − 𝑦̂𝑞|, if |𝑦̂𝑝 − 𝑦̂𝑞| < 𝑇𝑠𝑒𝑝
0, otherwise

(13)

where 𝜔 is the weight between two loss functions. 𝑦𝑙 , 𝑦̂𝑙 are the actual 
arrival time recorded in historical data and the predicted arrival time 
of agent 𝑙, respectively. 𝑇𝑠𝑒𝑝 is the runway separation requirement 
based on Table  1 (Park and Lee, 2023). Herein, we take a mixed 
training strategy that utilizes the combined loss and MSE loss for better 
performance than sticking to a single loss function. For example, the 
model is trained based on the MSE loss function for the first 40 epochs 
and then trained after switching to the combined loss function for the 
remaining 60 epochs. Performance analysis over different mixed ratios 
of loss functions is covered in the following section.

The neural network structure of the proposed model is summarized 
in Fig.  3. The original Transformer (Vaswani et al., 2017) adopted 
the encoder–decoder architecture. In practice, a decoder that uses 
previously generated outputs is not essential for our task that requires 
a single prediction. Additionally, it is noted that there is no significant 
performance difference with or without a decoder. In this regard, the 
proposed multi-agent model in this paper adopts only a Transformer 
encoder with the agent-aware attention mechanism. The encoder has 
multiple identical layers, each composed of two sublayers: a sublayer 
of multi-headed agent-aware attention and a sublayer of feedforward 
neural network. Residual connections and layer normalization are im-
plemented after each sublayer. By taking an input sequence, the time 
encoder generates the timestamped sequence of the observed trajec-
tories to provide the timestep corresponding to each element in the 
given input sequence. From the time-encoded sequence of observed 
trajectories, the queries, keys, and values are obtained and fed into the 
agent-aware attention sublayer. Lastly, by taking the encoder’s output, 
a Multi-Layer Perceptron (MLP) is used to provide a final prediction, 
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Table 1
Runway separation on a single runway (arrival after arrival in the same direction).
 Lead/Trail Light Medium Heavy Super 
 Light 120 120 120 120  
 Medium 180 120 120 120  
 Heavy 180 120 120 120  
 Super 180 180 120 120  

a list of arrival times for all agents. Additionally, an arrival sequence 
is then determined by sorting these ETAs in ascending order, assigning 
earlier ETAs to earlier landing slots.

The detailed information for the model implementation is as fol-
lows. The number (𝑁) of identical encoder layers is 3. All queries, keys, 
and values have a dimensionality of 512. The feedforward layers are 
set to a dimension of 1024, and the hidden layers in the Multi-Layer 
Perceptron (MLP) use dimensions of (512, 256). The multi-headed 
attention employs 16 heads (𝑚 = 16), and the dropout rate is set as 
0.1 for regularization. Finally, during the model training process, the 
backpropagation method calculates the gradients of the error function, 
and the ADAM optimizer is used to update the internal parameters of 
neural networks and thus minimize the loss function (Kingma and Ba, 
2014).

4. Results and discussion

To test the methodology described in Section 3, this section consists 
of three experiments. For the first experiment, we conduct comparative 
experiments to demonstrate the ETA prediction performance of the 
proposed model compared to existing models. Second, we measure 
sequence similarity to evaluate how well the proposed model emulates 
the ATC’s decision and compare it to the baseline model, Pairwise 
Preference Learning (PPL) (Jung et al., 2018). For the last experi-
ment, we prepare the test dataset for arrival sequencing and use it for 
comparative analysis based on the actual ATC feedback.

4.1. ETA prediction

For the ETA prediction experiment, we first implement comparison 
models. For single-agent prediction models, Gradient Boosting Machine 
(GBM) is chosen as a conventional machine learning model, while 
Transformer is selected as a deep learning model. Based on the liter-
ature on data-driven ETA prediction (Wang et al., 2020b; Choi et al., 
2023b), GBM typically outperforms other conventional models such 
as multiple linear regression, random forests, and 𝑘-nearest neighbors. 
Similarly, Transformer-based models show the best performance over 
other deep learning models such as long short-term memory and a gen-
erative adversarial network (Giuliari et al., 2021; Deng et al., 2024a). 
Therefore, we select GBM and Transformer as our comparison models 
over other models. GBM is a widely used ensemble learning model that 
combines several weak models (Friedman, 2001). The decision tree 
model is commonly employed as a foundational model (i.e., a weak 
model) in GBM. The main idea behind GBM involves the incremental 
inclusion of decision trees in the ensemble model, with a focus on 
correcting the errors made by the preceding trees. Hence, in the appli-
cation of ETA prediction, GBM calculates the discrepancy between the 
predicted ETA and the Actual Time of Arrival (ATA) from the previous 
iteration and constructs a new decision tree based on this residual to 
enhance the accuracy of the predictions. The Transformer-based model 
highly relies on the attention mechanism (described in Section 3.1) 
which can prioritize the most relevant parts of the data sequence for 
accurate prediction. Lastly, for multi-agent prediction, we choose the 
agent-aware attention mechanism using only MSE loss as a comparison.

We perform the ETA prediction experiment using two datasets 
(southeast and northwest) described in Section 2.2. Given that each 
sample typically comprises multiple aircraft, the single-agent models, 
6 
which are capable of handling only one aircraft at a time, need to gener-
ate predictions individually for each aircraft in the sample. In contrast, 
the multi-agent model produces ETAs for all aircraft in the sample with 
a single prediction. For comparative analysis, all models are trained and 
tested on the same dataset split for training, validation, and testing, and 
the hyperparameters of the comparison models are carefully selected to 
ensure a fair comparison. The deep learning models using self-attention 
and agent-aware attention basically adopt equivalent parameters to the 
proposed model, such as the dimension of the model, the number of 
encoder layers, the number of heads, and the number of epochs for 
training. Subsequently, by adjusting the learning rate within the range 
of 10−6 to 10−3, we evaluate whether the loss values for the three 
models (self-attention, agent-aware attention with MSE loss, and the 
proposed model) reach a specific level where further training yielded 
negligible performance improvement (i.e., the loss curve flattens out). 
This convergence indicates that the model had fully learned from the 
given data. Through these experiments, we identify 10−5 as the learning 
rate that leads to convergence for three neural network-based models.

However, it is noted that GBM is a conventional machine learning 
model with distinct hyperparameters such as the bagging fraction, fea-
ture fraction, and maximum number of leaves. In this regard, we tune 
these hyperparameters separately from the neural network-based mod-
els. To align the experimental setup with the previous three models, 
both the bagging fraction and feature fraction are set to 1, representing 
all available features and data are considered during training. For the 
maximum number of leaves, which controls the complexity of the GBM 
model, we compare MSE loss values by varying this parameter between 
30 and 300. Based on these experiments, we set the maximum number 
of leaves to 250.

For the proposed model, since we employ the combined loss func-
tion and the mixed training strategy, there exist more hyperparameters 
to be tuned. Firstly, we conduct a sensitivity analysis by changing 
the weight (𝜔) of the MSE loss in Eq. (10). Although we select a 
weight of 0.5 based on the smallest loss value in this paper, it is 
important to note that the impact of weight selection is not significantly 
meaningful, especially when considering the fluctuations in loss values 
after convergence. In addition, we conduct a performance analysis on 
different mixed ratios of loss functions to determine the best ratio. 
The performance of the model is evaluated in terms of both the Mean 
Absolute Error (MAE) and the separation accuracy. The separation 
accuracy is calculated by dividing the number of samples in which 
every pair of leading and trailing aircraft in a given traffic scene 
satisfies the separation requirement by the total number of samples. 
As an example, the performance analysis result using the southeast 
dataset is summarized in Fig.  5. The worst performance is observed 
when using the combined loss function alone, and the best performance 
is obtained when the ratio is 3:7, which is significantly better than the 
only MSE loss function used. Therefore, it is found that by taking the 
mixed training strategy, the model can achieve better performance even 
if it is trained for the same 100 epochs.

The ETA prediction results are evaluated using four different met-
rics. In addition to the MAE and separation accuracy mentioned above, 
the Root Mean Squared Error (RMSE) and the average violation time 
are also considered. The primary difference between MAE and RMSE 
lies in the fact that RMSE is more sensitive to outliers and imposes 
greater penalties on larger errors, whereas MAE assigns equal treatment 
to all errors. Hence, MAE and RMSE are useful for assessing overall 
performance and for reducing significant errors, respectively. Secondly, 
while the separation accuracy only determines whether each sample vi-
olates the separation requirement, the average violation time measures 
how much the violation deviates from the separation minimum based 
on Eq. (12).

Table  2 summarizes the ETA prediction performance of the compar-
ison and proposed models. The bold entries are used to highlight the 
superior performance in comparison to other models, primarily indi-
cating the proposed model. Compared to the original model with the 
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Table 2
Overall performance of ETA prediction.
 Model Single-agent Multi-agent (Agent-aware attention)
 Landing direction Metrics GBM Self-attention MSE loss only Proposed 
 
Southeast

MAE (s) 37.1550 34.0288 20.5228 17.7091  
 RMSE (s) 57.5425 56.5080 26.4195 24.4290  
 Sep. acc. 0.8101 0.8108 0.8936 0.9212  
 Avg. violation (s) 41.9096 41.4721 16.4680 16.6773  
 
Northwest

MAE (s) 50.2030 46.2987 18.0253 14.8618  
 RMSE (s) 74.3045 72.2432 22.3079 18.6480  
 Sep. acc. 0.7770 0.7742 0.9125 0.9373  
 Avg. violation (s) 44.1212 42.1675 14.1415 13.3767  
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Fig. 5. Performance difference with respect to the usage of different loss functions.

SE loss function, the proposed model employing the combined loss 
unction and the mixed training strategy demonstrates better perfor-
ance in both datasets. Furthermore, the multi-agent models perform 
uch better than the single-agent models, which can be evidence of 
he single-agent model’s inability to capture varying ETAs in different 
raffic conditions accurately. In other words, the single-agent ETA pre-
iction models focus only on individual aircraft independently, whereas 
he multi-agent models consider multiple aircraft simultaneously within 
 given traffic scenario and try to understand their relationship. More-
ver, based on the series of ETAs and separation constraints, the 
roposed model can closely emulate the ATC’s decision made for the 
iven traffic situation, leading to the capability to effectively handle 
arying ETAs caused by different traffic situations.
Although not as good as the multi-agent models, the separation 

ccuracy of the single-agent models is higher than expected. This is 
ttributed to the fact that, in many cases where the traffic density is 
ot heavy, there exists a time margin between aircraft (as shown in the 
lue histogram in Fig.  6), and therefore prediction errors do not cause 
he separation to be violated. However, in terms of average violation 
ime, significantly large errors are observed in the single-agent models, 
hile the degree of violation time in the multi-agent models is within 
n acceptable range based on the actual operation results (the orange 
istogram in Fig.  6). It is important to note that the results are subject 
o errors inherent in the ADS-B system and processing.
One interesting observation is that the single-agent models perform 

etter on the southeast data, while the multi-agent models show bet-
er performance on the northwest data. One of the main differences 
etween the two datasets is that the average flight times for the 
orthwest and southeast datasets are 1,437 and 1,182 s, respectively. 
n this regard, longer flight times in the northwest dataset can have 
n adverse impact on the prediction accuracy of single-agent models 
ecause there could be greater variation in ETA. However, despite 
onger flight times, the multi-agent models perform better in this 
q

7 
ig. 6. Histogram of runway separation between leading and trailing aircraft on the 
ame runway (minimum separation time: 120 s).  (For interpretation of the references 
o color in this figure legend, the reader is referred to the web version of this article.)

ataset. To understand the performance difference, it is important to 
nderstand the operational complexity in the two cases. When landing 
n the northbound direction, aircraft coming from up to four entry fixes 
imultaneously merge at the Initial Approach Fix (IAF). Conversely, in 
he southbound case, aircraft from three entry points (KARBU, GUKDO, 
nd OLMEN) align first before merging with aircraft from REBIT at 
he IAF. Therefore, in the northwest dataset with lower operational 
omplexity, the multi-agent models can capture traffic situations better, 
eading to more accurate ETA predictions. This is another evidence to 
how the importance of multi-agent models in ETA predictions.
The proposed model is also demonstrated with dynamically chang-

ng traffic scenarios, where the aircraft state information and the air 
raffic situation, including the number of aircraft operating in terminal 
irspace, are continuously updated. Through dynamic scenarios, it 
an be investigated how accurately the predicted ETAs and landing 
equence are updated. Note that the landing sequence is obtained by 
orting ETAs produced by the proposed model. Fig.  7 illustrates six 
onsecutive air traffic scenes in 90-s intervals, showing the different 
olored aircraft with their ETA, ATA, and landing order. The predicted 
nd actual landing orders are indicated in square brackets next to ETA 
nd ATA, respectively.
In the first scenario, multiple aircraft from two entry fixes (REBIT 

nd OLMEN) are continuously approaching the airport (ICN). In the 
irst scene, since Aircraft 3 (AC#3) is closely following AC#1, the 
roposed model predicts the ETA of AC#3 and the landing order for 
he second place, which is different from the ATA and actual order. 
his false prediction is immediately corrected in the second scene by 
bserving AC#3 deviates from the same path as AC#1. It seems that the 
TC adjusts the landing sequence later due to certain reasons, rather 
han the prediction being inaccurate, and the proposed model can 
uickly respond to this dynamic change. Additionally, in the first scene, 
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Fig. 7. Dynamic scenario 1 for ETA prediction and dynamic arrival sequencing.  (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)
AC#6 is ahead of AC#7 in the landing sequence, which likely reflects 
the ATC preference to prioritize aircraft from other entry fixes over 
aircraft from OLMEN in terms of speed and energy management (Choi 
and Hwang, 2024). Although AC#7 in the first scene is in a similar 
position to AC#8 in the sixth scene, their estimated arrival times are 
significantly different, determined based on different traffic conditions. 
We can see in the 3rd through 5th scenes that AC#7 takes a path-stretch 
vectoring toward the GUKDO procedure to maintain separation from 
AC#6. Meanwhile, AC#8 does not need to be vectored off from the 
assigned route.

In Fig.  8, the second scenario shows consecutive aircraft coming 
through GUKDO and OLMEN. AC#1 through AC#5 are already aligned 
in the first scene. AC#3 follows a path similar to AC#2, but their 
course angles differ slightly. The proposed model seems to be unable to 
account for this aspect, leading to a large error in the ETA prediction. 
Subsequently, this error is corrected in the next scene by capturing 
the difference in the paths of the two aircraft over time. Similarly, in 
the fourth scene, ETAs of AC#6 and AC#7 are predicted to violate 
the separation requirement, which is then adjusted based on their 
positional separation in the subsequent scene. This demonstrates that 
even if the proposed model makes some errors due to a lack of future 
information, it can correct the errors over time in a real-time operation. 
Moreover, scenes 3 to 6 depict a dynamically evolving traffic situation, 
8 
with the aircraft (AC#1 and AC#2) arriving at ICN and the aircraft 
(AC#9, AC#10, and AC#11) newly entering the terminal airspace. The 
snapshots present that the proposed model can precisely predict ETAs 
and the resultant landing sequence in consideration of landing aircraft 
removed from each scene and new incoming aircraft added to each 
scene. In other words, this indicates that not only real-time ETA pre-
diction but also dynamic arrival sequencing can be done concurrently 
by the proposed model.

4.2. Sequence similarity

In the previous section, we show that the proposed model can 
provide sequencing advisories as well as ETAs in real-time operations. 
However, in terms of performance, we mainly focus on ETA prediction 
and its accuracy, but resultant landing advisories are not extensively 
studied. Hence, in this section, we will quantitatively evaluate how 
accurately the proposed model can emulate ATC’s decision relative 
to the existing model. This quantitative analysis should be performed 
using metrics that can calculate the degree of similarity between the 
estimated arrival sequences and the actual arrival sequences (the actual 
decisions of the ATCs recorded in the ADS-B data). In this regard, for 
sequence similarity analysis, we employ two evaluation metrics: (i) 
the Kendall rank correlation coefficient (Kendall, 1938) and (ii) the 
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Fig. 8. Dynamic scenario 2 for ETA prediction and dynamic arrival sequencing.
Spearman’s rank correlation coefficient (Spearman, 1961). Both are 
non-parametric rank statistics without specific assumptions about data 
distribution and assess the monotonic relationship between two sets of 
ordinal data. Additionally, these metrics are widely used to evaluate 
arrival sequencing (Jung et al., 2018; Du et al., 2023). The Kendall 
rank correlation coefficient is given as 
𝜏 =

𝑛𝑐 − 𝑛𝑑
1
2 𝑛(𝑛 − 1)

(14)

where 𝑛𝑐 and 𝑛𝑑 correspond to the number of concordant pairs and 
discordant pairs, respectively. 𝑛 represents the length of the landing 
sequence (i.e., the number of arriving aircraft). On the other hand, the 
Spearman’s rank correlation coefficient is defined as 

𝜌 = 1 −
6𝛿(𝜎′, 𝜎)
𝑛(𝑛2 − 1)

(15)

where 𝛿(𝜎′, 𝜎) =
∑𝑛

𝑟=1(𝜎
′(𝑟) − 𝜎(𝑟))2, and 𝜎′ and 𝜎 are the predicted 

arrival sequence and the actual arrival sequence, respectively. Both 
coefficients range between −1 and 1, and the sign and magnitude 
of the value are related to the direction and strength of association, 
respectively. For example, +1 indicates that two arrival sequences have 
exactly the same rankings.

For comparison, we select two baseline models. One is First-Come 
First-Served (FCFS) sequencing estimated by a single-agent ETA pre-
diction model, and the other is the Pairwise Preference Learning (PPL) 
model, the foremost data-driven approach to emulate ATC preference 
9 
and decision. PPL consists of multiple pairwise preference models based 
on entry fixes, which are Binomial Logistic Regression (BLR) models. 
All pairs of aircraft in traffic situations are fed into the corresponding 
pairwise preference models to compute the preference probabilities. 
The final score of each aircraft obtained by summing all probabilities 
is then compared with others to determine the overall sequence of 
arrivals. The experiment is carried out on the same dataset described 
in Section 2.2. We calculate two correlation coefficients for all testing 
samples and illustrate their distribution in two histograms. As shown 
in Fig.  9, in both correlation coefficients, the distributions of the 
proposed model are the most right-skewed, followed by FCFS, and 
finally PPL. Since closer to +1 indicates greater similarity between two 
arrival sequences, PPL is the least accurate in terms of emulating ATC’s 
decisions for arrival sequencing.

To provide a more comprehensive analysis, we examine this result 
more closely by categorizing it according to traffic density. In this 
study, we classify traffic density based on the number of aircraft, with 
light traffic referring to 5 or fewer aircraft, medium traffic referring 
to 10 or fewer aircraft, and heavy traffic referring to more than 10 
aircraft. The results are summarized in Tables  3 and 4. We observe 
that as traffic density increases, the PPL’s values of both coefficients 
are reduced sharply in comparison to the other two models. In order 
to ensure that the difference in performance does not originate from 
the choice of classification models or the way of training, we thor-
oughly train the multiple models, including GBM and Support Vector 
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Fig. 9. Sequence similarity histograms for comparison.
Table 3
Kendall rank correlation coefficient (average).
 Traffic density PPL FCFS Proposed 
 Light 0.8790 0.8909 0.9894  
 Medium 0.8231 0.8601 0.9734  
 Heavy 0.7643 0.8324 0.9584  
 Overall 0.8305 0.8649 0.9760  

Table 4
Spearman’s rank correlation coefficient (average).
 Traffic density PPL FCFS Proposed 
 Light 0.9278 0.9394 0.9984  
 Medium 0.9137 0.9328 0.9840  
 Heavy 0.8974 0.9179 0.9686  
 Overall 0.9154 0.9325 0.9860  

Machine (SVM), using a ten-fold cross-validation, and testing results are 
presented in Table  5. It is noticed that certain cases exhibit the same 
level of accuracy, and the average accuracy of three different models 
is almost identical, 97.1%. This implies that the performance of the 
classification models nearly reaches the Bayes error rate (Fukunaga, 
2013). The Bayes error rate is the minimum theoretical error rate 
(i.e., fundamental limit) achievable for a given dataset due to the 
inherent overlap between classes in the data, which suggests that the 
classification models perform effectively.

Since there are no performance issues with the pairwise preference 
models, we need to focus on how PPL determines the arrival sequence. 
PPL can accommodate the actual ATC’s cognitive process of making 
pairwise comparisons for arrival sequencing. However, the problem 
seems to lie in PPL’s insufficient capabilities to capture dependence 
between decisions about the landing order of each aircraft. This means 
that PPL makes the sequencing decision independently based on the 
ranking of the scores, although the landing order of one aircraft is 
heavily influenced by those of other aircraft. This issue is illustrated 
by the following examples in Fig.  10, where a filled dot indicates the 
current position of each aircraft, and an asterisk indicates the future 
position of the aircraft in 5 min.

In Fig.  10(a), the predicted landing order of AC#2 and AC#5 is 
reversed compared to the actual one. It is noted that AC#4 and AC#5 
fly very close together, and hence it is difficult for AC#2 to get between 
them based on the estimated arrival sequence. Therefore, even though 
AC#5 has a slightly higher score than AC#2, AC#2 can proceed with 
direct-to vectoring after AC#1 and AC#3, which are already vectored 
10 
off the designated routes. Note that this frequent vectoring based on 
area navigation (RNAV) and the point merge system is a common 
operation in terminal airspace (Deng et al., 2022; Choi et al., 2023a), 
leading to variability in aircraft travel times. In Fig.  10(b), AC#10 and 
AC#11 are in a similar situation to AC#2 and AC#5 in the previous 
scene. When comparing AC#10 and AC#11 based on PPL, AC#10 has 
twice the score of AC#11, supporting that AC#10 should arrive before 
AC#11. However, looking at the positions (marked with asterisks) 
5 min later, AC#8, AC#9, and AC#11 are all aligned in a straight line. 
When AC#9 takes a slight path-stretch vectoring to maintain separation 
from AC#8, AC#11 follows closely behind AC#9. Consequently, unlike 
AC#2, AC#10 does not directly head toward the IAF to overtake 
AC#11. In this regard, the separation between the multiple leading 
aircraft and the resulting time slots available to the trailing aircraft 
should be considered for accurate sequencing predictions.

This analysis highlights the importance of the proposed model in 
the sense that our attention-based model with the separation constraint 
can address the observed limitations. This is evidenced by the two 
coefficients significantly greater than those of the other two models. As 
a side note, it is noticed that FCFS shows two coefficients greater than 
those of PPL at medium and high traffic densities, which means that 
the predicted arrival sequences by FCFS are more similar to the actual 
arrival sequences than those by PPL. However, this observation raises 
doubts in the sense that a single-agent ETA prediction model does not 
consider the priorities or interactions among the incoming aircraft. A 
possible explanation is found in the existing literature (Du et al., 2023). 
This study analyzes sequencing performance with respect to different 
ETA accuracy and claims that an improvement in prediction accuracy 
results in a landing sequence closer to an actual landing sequence, as 
well as a reduced average delay. Therefore, it is attributed to the fact 
that the enhanced accuracy of the ETA prediction model, which utilizes 
the self-attention mechanism and accommodates more features, can 
lead to an increased similarity to actual landing sequences.

4.3. Arrival sequencing

In this section, the proposed model is compared with the prominent 
optimization algorithms in terms of average delay as well as sequence 
similarity. For this experiment, we first prepare 50 testing samples (25 
for the northwest and 25 for the southeast) labeled with a scheduled 
time of arrival for each aircraft. For comparison, three different algo-
rithms are considered: (i) FCFS, (ii) Receding Horizon Control (RHC), 
and (iii) Constrained Position Shifting (CPS). The FCFS-based arrival 
sequence is obtained by sorting ETAs generated by a single-agent ETA 
prediction model in non-descending order, which is used as an initial 



H.-C. Choi et al. Journal of Air Transport Management 128 (2025) 102828 
Table 5
Accuracy of pairwise preference models.
 Models KARBU-KARBU KARBU-GUKDO KARBU-OLMEN KARBU-REBIT GUKDO-GUKDO 
 BLR 0.9971 0.9806 0.9663 0.9531 0.9918  
 SVM 0.9971 0.9791 0.9652 0.9544 0.9908  
 GBM 0.9971 0.9817 0.9652 0.9560 0.9917  
 Models GUKDO-OLMEN GUKDO-REBIT OLMEN-OLMEN OLMEN-REBIT REBIT-REBIT  
 BLR 0.9587 0.9469 0.9912 0.9302 0.9880  
 SVM 0.9587 0.9483 0.9916 0.9299 0.9880  
 GBM 0.9609 0.9468 0.9914 0.9285 0.9873  
Table 6
Arrival sequencing performance evaluation.
 Metrics FCFS RHC (𝑁𝑟ℎ𝑐 = 2) Proposed CPS (𝜅 = 3)  
 Avg. avg. delays 472.9249 s 425.9315 s 430.1040 s 404.7632 s  
 Avg. Kendall’s 𝜏 0.8766 0.8643 0.9794 0.8364  
 Avg. Spearman’s 𝜌 0.9366 0.9281 0.9902 0.9115  
 Response time 29.45 ± 8.986 ms 0.164 ± 0.221 s 4.094 ± 0.383 ms 1.630 ± 0.817 s 
Fig. 10. Illustrative examples of false prediction generated by PPL.

arrival sequence for the following algorithms. The RHC algorithm is not 
only computationally efficient but also robust in dynamic and uncertain 
environments by iteratively optimizing the arrival sequence within the 
dynamic horizon (Hu and Chen, 2005). One of the key parameters in 
the RHC algorithm is the length of the receding horizon 𝑁𝑟ℎ𝑐 , which 
determines the trade-off between performance and computational cost. 
CPS efficiently creates an optimized arrival sequence by allowing an 
aircraft to be moved up to a specified maximum number of posi-
tion shifts (𝜅) from its initial arrival sequence to prevent excessive 
exploration of the arrival sequence (Balakrishnan and Chandran, 2006).

The four different methods are applied to the testing samples and 
the resulting average delay is shown as a box plot in Fig.  11. In terms 
of the interquartile range and median, RHC is slightly worse than 
CPS, whereas the proposed model and FCFS show significant differ-
ences from them. For numerical comparison, the mean of the average 
11 
Fig. 11. Performance comparison in terms of average delay.

delays of all samples and the average of the two rank correlation 
coefficients for sequence similarity are calculated, and the response 
time is also recorded to evaluate computational efficiency. The overall 
results are summarized in Table  6. In three comparison algorithms, it 
is observed that sequence similarity decreases as the average delay is 
further minimized. This could indicate that excessive rearrangement 
of the landing sequence to optimize the objective function may be 
inappropriate or impractical in an aspect of actual air traffic control. 
On the other hand, although the delay of the proposed model increases 
by 0.98% compared to that of the RHC algorithm, both coefficients 
remain significantly higher than the others. The computation results 
indicate that all methods are generally applicable to real-time systems, 
and CPS can further reduce the computational burden by carefully 
tuning 𝜅, with a slight trade-off in sequencing performance (i.e., Avg. 
delays). It is important to note that the response time includes both 
the computation of ETA predictions (for 𝑛 incoming aircraft, the single-
agent model iterates 𝑛 times, while the multi-agent model computes just 
once) and arrival sequencing optimization. Therefore, it is determined 
that, by slightly compromising effectiveness, the proposed model can 
achieve a higher level of similarity and lower computational cost than 
the other methods.

Relatively small coefficients of other methods seem to originate 
from their inability to accommodate the ATC’s decision process and 
preferences in given traffic situations. To support this point, the feed-
back on the samples is obtained from two actual ATCs and two ATC 
instructors. Participants are asked to choose one of the multiple ar-
rival sequences without knowing which model created which arrival 
sequence and to provide the main considerations for their decisions. For 
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Fig. 12. Case study 1.
Fig. 13. Operationally infeasible assigned time for AAR762.
illustration, we first analyze two cases based on ATC feedback. Fig.  12 
displays the traffic scene with five aircraft and the actual and predicted 
arrival sequences for the current traffic situation. Among TWB164 
coming from OLMEN and APJ1 coming from GUKDO, both RHC and 
CPS suggest that TWB164 land first, which is different from the actual 
arrival sequence. However, depending on the ATC’s preference and the 
complexity of control, the ATC can decide to vector APJ1 directly to 
the IAF like AAR762 and AAR748, thereby improving efficiency in air 
traffic management. In this case, the arrival sequence estimated by RHC 
and CPS is calculated to have a Kendall rank correlation coefficient of 
0.8 and a Spearman’s rank correlation coefficient of 0.9. Furthermore, 
this case can disclose potential issues that may arise when utilizing an 
ETA prediction model and an optimization algorithm, respectively. The 
optimized arrival sequence requires AAR762 to land in 3 min. However, 
as shown in Fig.  13, it is practically infeasible for AAR762 to land in 
3 min based on the travel time distribution of historical trajectories 
passing through AAR762’s current position. This is caused by a large 
prediction error in the ETA prediction model plus the predetermined 
time window (i.e., the earliest possible arrival times of the aircraft) 
allowed by the sequencing algorithms. Note that this issue is not 
observed in our proposed model which can do both ETA prediction and 
arrival sequencing simultaneously.

Similarly, in Fig.  14, seven aircraft come from OLMEN and GUKDO. 
When comparing KAL1402 and VJC878, KAL1402 follows the leading 
aircraft closely, and its speed is higher than VJC878. Furthermore, the 
aircraft (VJC878) coming from the south is unable to descend due to 
the aircraft departing the airport, while KAL1402 is able to descend 
first. Therefore, it is determined that KAL1402 is positioned ahead 
12 
of VJC878. When comparing KAL320 and AAR8532, VJC878 can be 
followed by KAL320 without any gaps along the STAR. However, if 
AAR8532 is required to arrive first, many control actions are required 
to maintain the safe separation between aircraft, increasing the work-
load and complexity. In this case, the arrival sequence estimated by CPS 
is calculated to have a Kendall rank correlation coefficient of 0.8095 
and a Spearman’s rank correlation coefficient of 0.9286.

Lastly, we analyze the frequency of arrival sequences chosen by 
ATCs and their key considerations. It is observed that the proposed 
model is chosen 4.19% more often than FCFS, 5.24% more often 
than RHC, and 28.27% more often than CPS. This difference can 
be interpreted as significant, considering that the models frequently 
share the same arrival sequence. Subsequently, all considerations for 
sequencing decisions in each sample are collected and summarized in 
Fig.  15. This pie chart reveals that the considerations related to air 
traffic control (ATC preference for specific traffic patterns, commu-
nication clarity, and complexity/workload of control) account for a 
significant portion (43%) of the total. In addition, the consideration 
(i.e., feasibility) to prevent impractical situations (e.g., Fig.  13) also 
accounts for 14%. The key considerations of ATCs are essential for 
effective and efficient real-world air traffic control and thus influence 
ATCs’ decisions, which can result in a slight degradation in performance 
but instead lead to smoother operations. In conclusion, optimization-
based algorithms cannot effectively account for ATCs’ considerations, 
leading to a discrepancy between the actual landing sequence made by 
ATCs and the landing sequence optimized by the existing algorithms, 
while the proposed model can learn from the data and emulate the 
actual operation.
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Fig. 14. Case study 2.
Fig. 15. Main considerations for arrival sequencing decision by ATCs.

5. Conclusion

In this paper, we proposed a multi-agent model for Estimated Time 
of Arrival (ETA) prediction and dynamic arrival sequencing by emulat-
ing Air Traffic Controllers (ATCs). To properly understand the interac-
tion between the air traffic management system and human operators 
in complex traffic situations, we proposed an attention mechanism-
based approach with a mixed training strategy that utilizes both the 
mean squared error loss and the separation loss functions. To demon-
strate the performance of the proposed model, we conducted extensive 
experiments for ETA prediction and arrival sequencing with real air 
traffic data. The experimental results demonstrated that the proposed 
model can provide more accurate ETAs and more realistic landing 
sequences in real time than existing algorithms. The sequence similarity 
has been measured by two well-known rank correlation coefficients, 
which shows the superiority of the proposed model in emulating ATC 
decisions. Furthermore, the result of experiments with subject matter 
experts for landing sequence selection in the given traffic samples 
showed that ATCs choose landing sequences generated by the proposed 
model more frequently due to actual operation-related considerations, 
such as the complexity of air traffic control. The feedback from actual 
ATCs showed that there are some key considerations that cannot be 
directly incorporated into conventional optimization-based sequencing 
algorithms, while the proposed model can effectively account for them.

In future work, the current model will be further elaborated by 
incorporating meteorological information, such as wind and other 
weather components, and operational information, including runway 
occupancy and flight schedules. In addition, although departure aircraft 
13 
have different routes and designated flight levels from arrival aircraft, 
it could still constrain the operations of arriving aircraft or affect their 
landing sequence. Hence, the position and altitude of the departure 
flights will be considered as an additional feature to predict the 
landing sequence more accurately. To further improve efficiency and 
effectiveness, recently developed variants of Transformer (the state-
of-the-art models) will be incorporated into the proposed multi-agent 
model. From the ATCs’ feedback and analysis, it is found that there 
exists the ATC’s preference for certain control patterns. Integrating air 
traffic control patterns into this study can lead to further advancement 
of the air traffic management system. In this regard, the identification 
and classification of air traffic control patterns in terminal airspace will 
be a worthwhile study. Lastly, the successful emulation of an air traffic 
controller in this study can have the potential to be extended to delay 
prediction and propagation where the impact of air traffic control is 
critical.
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