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ARTICLE INFO ABSTRACT

Keywords: Accurate Estimated Time of Arrival (ETA) prediction is critical to the air traffic management system including
ETA prediction aircraft sequencing for which Air Traffic Controllers (ATCs) are responsible. Although significant advancements
Arrival sequencing have been achieved in both ETA prediction and arrival sequencing, the development of decision support tools

Multi-agent system
Attention mechanism
Machine learning

Air traffic management

can be further improved by learning the expertise of ATCs and reflecting on their practical considerations.
To fill the research gap, in this paper, we propose a multi-agent model for both ETA prediction and arrival
sequencing based on the attention mechanism that can account for the current air traffic situation and capture
the decisions made by ATCs. The proposed model is demonstrated with real air traffic surveillance data
recorded at Incheon International Airport in South Korea and compared with existing models in terms of
ETA prediction, sequence similarity, and arrival sequencing performance. The experimental results show that,
in a real-time manner, the proposed model can provide landing sequences more acceptable to ATCs as well
as more accurate ETAs than those of comparison models. Specifically, sequence similarity is measured by two
rank correlation coefficients, which shows the superiority of the proposed model in emulating ATC decisions.
Furthermore, important considerations in arrival sequencing are discussed based on actual ATC feedback.

1. Introduction to their designated destinations. The primary objectives of arrival se-
quencing are to optimize traffic flow, alleviate congestion, and improve

The Air Traffic Management (ATM) system encompasses complex airspace safety. To achieve these objectives, Arrival Manager (AMAN)
and safety-critical operations which are mainly managed by Air Traffic was developed, which assists ground-based ATCs in establishing safe
Controllers (ATCs) and pilots to ensure safety and efficiency. This air and efficient arrival sequences to a designated airport (Eurocontrol,
traffic operation becomes more complex and challenging as demands 2010). The tool, AMAN, works in two main steps. Initially, Estimated
continue to increase. Indeed, the demand for air transport is expected Time of Arrival (ETA) prediction is performed for each aircraft based
to increase by an average of 4.3% annually over the next 20 years, and on current states. Subsequently, the optimal sequence of arrivals builds

the projected number of flights is expected to reach around 90 million
by 2040 (ICAO, 2019). This continuous growth of demands can lead
to an excessive workload for both ATCs and pilots, thereby resulting
in the degradation of the ATM system. To effectively respond to this
problem, a lot of effort has been put into developing decision support
tools.

One of the tasks where such a decision support tool is most needed
is arrival sequencing which has a significant impact on the efficiency
of the overall ATM system in minimizing delays. This task is a crucial
decision-making process to determine a landing sequence for multiple
incoming aircraft, facilitating the timely and orderly arrival of aircraft

on the ETAs of the arriving aircraft, aiming to minimize overall flight
delays and/or maximize airport throughput, while maintaining safety.

To develop arrival sequencing models for AMAN, various
approaches have been taken in the existing literature. Beasley et al.
(2000) formulated aircraft sequencing and scheduling for landings as
a mixed integer linear programming problem. The study aimed to
identify the optimal sequence of arrivals and individual landing times
for various runway configurations. Due to the complexity of finding the
optimal solution, arrival sequencing is known as an NP (Nondeterminis-
tic Polynomial time)-hard problem. For practical applications, heuristic
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approaches have instead been adopted to find a near-optimal sequence
of arrivals. To efficiently find feasible arrival sequences, Ernst et al.
(1999) proposed a specialized simplex algorithm with a metaheuristic.
In addition, the Genetic Algorithm (GA) was widely used to generate
nearly optimal solutions within a reasonable time (Beasley et al., 2001;
Salvatore and Ignaccolo, 2004). Furthermore, Hancerliogullari et al.
(2013) proposed metaheuristics using greedy algorithms as initial solu-
tions, which results in better performance for the real-world application
of the aircraft sequencing problem.

Recognizing the dynamic nature of the ATM environment and the
practical issues that affect actual operations, various new approaches to
arrival sequencing have been proposed. Dear (1976) and Balakrishnan
and Chandran (2006) proposed Constrained Position Shifting (CPS)
based on a practical consideration. CPS is initialized with First-Come
First-Served (FCFS) sequences of arrivals and only allows a predefined
number of position shifts from FCFS orders, which is determined by
sorting ETAs. To address the issues that arise in the dynamic envi-
ronment near terminal airspace, dynamic arrival sequencing has been
solved based on the displacement problem (Beasley et al., 2004) or the
Receding Horizon Control (RHC) algorithm (Hu and Chen, 2005). Ben-
nell et al. (2017) proposed to use dynamic programming and local
search heuristics to solve the dynamic problem, which requires periodic
updates to the previous arrival sequence with the newly available
aircraft.

Although previous studies have shown great progress and their op-
timization tools have helped ATCs, the actual arrival sequence adopted
by ATCs often deviates from that presented by optimization algorithms.
This can be explained by the limitations of existing algorithms that do
not fully accommodate the decision-making processes of ATCs and/or
the dynamic nature of the environment (Tang and Abbass, 2014; Jung
et al., 2018). To address this practical issue, data-driven approaches
have been adopted. Tang and Abbass (2014) employed a probabilis-
tic finite-state machine and GA to derive ATC heuristics for aircraft
sequencing with simulated aircraft data. In the recent study (Jung
et al.,, 2018), Pairwise Preference Learning (PPL) was proposed to
directly accommodate the cognitive processes of actual ATCs, which
are important for practical application to actual operations. However,
PPL has insufficient capabilities to capture the dependence that the
landing order of each aircraft is affected by the ordering decisions of
other aircraft, and its computational burden to consider all possible
pairs increases quadratically as the number of aircraft increases.

Moreover, existing studies perform ETA prediction and arrival se-
quencing separately, as AMAN works. Consequently, the performance
of arrival sequencing is greatly dependent on the accuracy of ETA
prediction models. Du et al. (2023) showed that a more accurate ETA
prediction can contribute to reducing the average delay and dwell
time as well as the deviation from the actual landing sequence. In this
regard, various data-driven models have been used to improve the ac-
curacy of the ETA prediction. Gui et al. (2021) utilized the conventional
machine learning algorithm (i.e., extreme gradient boosting), and Wang
et al. (2020b) proposed the automated method that stacks multiple
existing models. In addition, the neural network-based approach has
been widely used, such as recurrent neural network (Ayhan et al.,
2018), bidirectional long short-term memory (Wang et al., 2020a),
spatiotemporal neural network (Ma et al., 2022), and clustering-based
deep neural network (Deng et al., 2023). However, despite these ad-
vancements, existing works have focused only on the single-agent ETA
prediction model that assumes each aircraft to be independent and
neglects the effects of neighboring aircraft and air traffic control in
congested terminal airspace.

Therefore, to address the aforementioned limitations, this paper
proposes a multi-agent model as a decision support system for two
intertwined problems: ETA prediction and arrival sequencing. Firstly,
we employ the attention mechanism to better understand the interde-
pendencies of multiple aircraft and emulate ATC’s decisions in arrival
sequencing. By incorporating the separation constraint into the loss
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function and utilizing a novel mixed training strategy, a single model
can accommodate both ETA prediction and arrival sequencing, result-
ing in better performance in each task. Moreover, this multi-agent
model helps avoid the generation of unrealistic arrival sequences that
result from the combination of errors in the ETA prediction model
and inaccurately allowed deviations in the sequencing model. The
performance of the proposed model is demonstrated with extensive
experiments on both ETA prediction and arrival sequencing and ana-
lyzed in terms of various metrics. Furthermore, blind tests with actual
ATCs as subjects and their feedback reveal important considerations
that traditional optimization-based algorithms can fail to reflect.

The remainder of this paper is organized as follows. Section 2
describes the specific problem, domain background, and data prepara-
tion for this study. Section 3 presents the preliminary of the attention
mechanism and then proposes the multi-agent model to emulate ATCs’
decisions. In Section 4, the performance of the proposed model is
evaluated using the dataset prepared in Section 2 and analyzed in
terms of ETA prediction, sequence similarity, and arrival sequencing,
respectively. Lastly, the paper concludes with a summary of the findings
and outlines potential future research in Section 5.

2. Problem description

In this section, we first clarify the air traffic problems (ETA pre-
diction and arrival sequencing) studied in this paper. Secondly, we
describe the data used for our data-driven model and domain knowl-
edge regarding the specific terminal airspace, where the data was
collected.

2.1. Problem statement

This paper focuses on providing a realistic landing sequence and
corresponding arrival times for multiple aircraft in terminal airspace,
designed to function as a decision support system for ATCs. Specifically,
two intertwined problems (i.e., ETA prediction and arrival sequencing)
are addressed at once. By taking the state and traffic information as
input (e.g., position, speed, and travel time), the generated advisories
reflect ATC decisions and practical considerations by emulating ATCs
from past operations recorded in the historical dataset. In addition,
this paper considers dynamic scenarios in which the number of aircraft
keeps changing over time, requiring iterative updates in real time.

This problem necessitates a new approach as shown in Fig. 1, while
the existing approach solves the ETA prediction and arrival sequencing
problems sequentially. In the existing approach, the track points of
each aircraft are fed into an ETA prediction model. Once all the ETAs
are computed and collected, they are then utilized for a sequencing
algorithm to determine the optimal sequence of arrivals for the current
air traffic situation. In contrast, on the right side, all the track points of
multiple aircraft are directly fed into one multi-agent model trained
for implicitly learning ATC intentions and decisions through agent
interactions.

2.2. Data preparation

In this paper, we collect and utilize the arrival trajectories at In-
cheon International Airport (ICN), South Korea, recorded in the Auto-
matic Dependent Surveillance-Broadcast (ADS-B) data between January
and May 2019. We also take advantage of Aeronautical Information
Publication (AIP) data in conjunction with the ADS-B data. The ADS-B
data consists of various aircraft states such as longitude, latitude, alti-
tude, ground speed, vertical speed, and course angle, as well as flight
information and time. In order to focus on the terminal airspace oper-
ation, we extract regulation and domain knowledge from the AIP data.
For instance, entry fixes, Standard Terminal Arrival Routes (STARs),
and instrument approach procedures are denoted with the triangle
markers and white dotted lines in Fig. 2. Around ICN, there are four
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Fig. 1. Comparison between existing and new approaches to the arrival sequencing problem.
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Fig. 2. Illustration of historical aircraft trajectories and entry fixes in ICN terminal airspace.

different entry fixes to enter terminal airspace, i.e., KARBU, GUKDO,
OLMEN, and REBIT. Aircraft entering through KARBU are predomi-
nantly from North America, whereas those passing through GUKDO
generally come from Oceania and Japan. Aircraft passing through
REBIT typically originate from Europe and China, while those travers-
ing OLMEN come from Southeast Asia and Jeju. Upon crossing one of
four entry fixes, sector controllers hand off each aircraft to approach
controllers.

Firstly, we process each aircraft trajectory for ETA prediction and
arrival sequencing. In terminal airspace, we limit the length of the
trajectories from the Final Approach Fix (FAF) to 70 nmi from the
airport. The distance of 70 nmi is determined as the extended distance
before entering terminal airspace through the four entry fixes. The data
point at the FAF is used as the arrival time instead of landing at the
runway due to the lack of recorded data near the airport, which makes
the actual landing time unavailable. This is because most of the last
data points are recorded before the actual aircraft lands on the runway,
whereas few of them have data points on the runway. Therefore, to
unify them to the same point, we enforce the last data point of all data
to end at the FAF and set the time as the arrival time. Additionally,
although the ADS-B data provides flight information which includes
aircraft types and call signs, there are so many different kinds, which
makes it difficult for data-driven models to understand the relationship
between neighboring aircraft. Instead, using the Wake Turbulence Cat-
egory (WTC), which prescribes the minimum separation requirement
between aircraft, the aircraft can be categorized and labeled with one

of five categories (super, heavy, medium, light, and unknown case). In
addition, to account for the aircraft’s travel time in terminal airspace,
we compute the travel time as the time flown in terminal airspace,
starting at zero when the aircraft is 70 nmi away from the airport.
Therefore, along with the state information (position, speed, and course
angle), the travel time and the WTC information are also used for model
training to improve the accuracy of the model. Therefore, each aircraft
trajectory includes a total of 8 features with a 10-s interval.

Additionally, the recorded ADS-B data need to be preprocessed to
resolve irregular sampling rates, which typically range from 20 to 60 s.
The remaining trajectories are then reconstructed using a regularized
least-squares optimization (Barratt et al., 2018; Deng et al., 2024b),
which is equivalent to solving the optimization problem:

minimize || H P = PI% + 41| DyPI% + 41D PII% ©)

where the optimization variable P € RY is the reconstructed trajec-
tory of length L, and P is the measurement matrix. H is a diagonal
matrix to indicate whether the data is measured or not at a given
time. D, and D; are second-order and third-order difference matrices,
respectively. A, and 1, are regularization hyper-parameters. As a result,
it is observed that the reconstructed trajectories in Fig. 2(b) are smooth
and have a constant sampling rate compared to the originally recorded
trajectories in Fig. 2(a).

Lastly, for a multi-agent system, we need to collect multiple aircraft
trajectories at each time instance in the form of a traffic scene (i.e., a
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sample). Herein, to account for dynamically changing traffic, we set
the time window for observation to 2 min. In other words, we utilize
each aircraft’s trajectory from two minutes ago to the present to predict
its ETA at the current time. From the collected dataset, we exclude
traffic scenes that contain three cases: (i) go-around, (ii) diversion, and
(iii) separation violation. These cases could significantly deteriorate the
performance of the ETA prediction due to abnormal flight times caused
by multiple approach and landing attempts or landing at different
nearby airports. Furthermore, we consider traffic situations where only
one runway (runway 15L or runway 33R) is open for arrival flights. The
dataset is split into two subsets based on the landing direction: flights
heading southbound and northbound to ICN. A total of 11,398 and
17,738 samples are collected for the northwest and southeast datasets.
In each case, 80% are randomly selected for training, while 10% each
is used for validation and testing, respectively.

3. Methodology

In this section, we first summarize the attention mechanism that
is the basis for the proposed approach. Secondly, the proposed multi-
agent model (in Fig. 3) is explained in detail, especially focusing on
agent-aware attention and mixed training strategy.

3.1. Attention mechanism

In natural language processing or neural machine translation, the
attention mechanism is a powerful technique that can address the
issue when considering the entire context of a long input sequence.
This mechanism can give more importance to specific and relevant
parts of the input sequence while making predictions. For example,
the standard attention mechanism selectively attends to specific words
in a sentence or parts of an image by mimicking the human attention
process.

Especially, for self-attention, the scaled dot-product attention func-
tion is introduced in the attention layer within the Transformer ar-
chitecture (Vaswani et al., 2017). The self-attention function works
by creating three vectors from the encoded input sequence: queries,
keys, and values. In the ETA prediction application, queries work like
questions about the relevance between a specific track point and other
observations (position, speed, and course angle) that can help predict
the ETA. Keys represent all other points being compared to the current
point, and values contain the actual information associated with each
point in the input sequence for ETA prediction. An attention function
takes a query and a set of key—value pairs as input and computes the dot
product between the query and all keys, followed by scaling the result
down by \/d_k, where d, represents the square root of the dimension of
the key vectors. This scaling is crucial to prevent numerical instability
caused by large dot products. Subsequently, a softmax function is
applied to the compatibility function (the dot product between the
query and the key vectors) to derive the relevance weights on the
values. In practice, as an attention function operates on a set of queries
concurrently, the queries, keys, and values are arranged into matrices
denoted as Q, K, and V, respectively. The scaled dot-product attention
can be expressed as

. <QKT>

Attention(Q, K, V') = softmax |4 (2)
Vi

Finally, the mechanism generates an output that summarizes the most

important information from the input sequence for the current predic-

tion.

The multi-head attention function extends the capabilities of the
scaled dot-product attention by projecting the queries, keys, and val-
ues linearly into multiple subspaces. This technique allows the deep
learning model to attend to and integrate information from various
representation subspaces and positions. In the case of ETA prediction,
using multiple attention heads allows the model to focus on various
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aspects such as speed changes, altitude fluctuations, and trajectory pat-
terns, which can enhance ETA accuracy by providing a more detailed
representation of the input sequence. When the attention function is
executed in parallel, the results are concatenated and subsequently
projected again, providing the final values.

MultiHead(Q, K, V) = Concat(head,, -+ , head,,)W © 3)

where head), = Attention(QW,.2, KWK VWY), h € {1,2,+.m}, and m
is the total number of heads. W©°, WhQ, WhK, WhV are weight matrices.

3.2. Proposed multi-agent model

To address the air traffic problem in Section 2.1, we propose to em-
ulate ATC’s decision-making process under various airspace conditions
by adopting a multi-agent system based on the attention mechanism.
Given air traffic situations, ATCs monitor aircraft operations and decide
their landing orders by comparing neighboring aircraft based on several
factors, such as priority, relative position, aircraft type, and arrival
time. In this regard, imitating ATC requires a multi-agent system that
can understand the air traffic situation and let each aircraft perceive
itself differently from other nearby aircraft. To achieve this goal, we
utilize the agent-aware attention function proposed in Yuan et al.
(2021).

While the attention mechanism mentioned in the previous subsec-
tion does not have any notion of temporal and social dimensions which
are important in multi-agent systems, agent-aware attention takes both
dimensions into account simultaneously. Agent-aware attention is de-
signed to maintain agent identities and recognize the properties of
other agents by distinguishing between the elements of the same agent
and the elements of other agents. Similar to the scaled dot-product
attention, the agent-aware attention mechanism takes keys K, queries
Q, and values V as input. The output of the agent-aware attention
function is computed as

AgentAwareAttention(Q, K, V') = softmax <i> |4 (€))
dy
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A=M O QKL )+ (1= M) O Quper Ky, 5)
Qself = Qu/yg]f’ Qother = QI’Vther (6)
Kself = KVVSI:[/"’ Kother = Kw/gﬁlgr (7)

where M is a masking matrix in which M;; equals to one if the ith
query g; and jth key k; belong to the same agent, and M;; equals
to zero otherwise. In other words, this masking technique enables
the computation of the attention weight matrix (4 in Fig. 3) to be
calculated differently depending on whether the ith query and the jth
key belong to the same agent. ® denotes element-wise product and

ngl fWAle(z f,I/Vther,VVoﬁm € R™4 are trainable parameters. n is the

number of agents.

Fig. 4 illustrates how agent-aware attention works to preserve agent
identities. In the traffic scene, four aircraft are heading northwest for
landing and the observed trajectories are depicted as a series of dots
(t = 1,---,T). As shown in Fig. 3, in the matrix A, the elements (red)
whose ith query and jth key belong to the same agent are represented
by different colors than those (blue sky) whose ith query and jth key
belong to different agents. This indicates that the ego agent can pay
attention to its own trajectory and the trajectories of other agents in
another way for its prediction. On the left in Fig. 4, the ego agent with
the arrow is more attending to its current track point (+ = T) among
its entire track points and more attending to the closest neighboring
agent among the other agents. On the other hand, in the right plot,
the ego agent in the east pays attention to the preceding aircraft
during the approach, rather than the closest neighboring agent. This
implies that the level of attention is closely related to the landing
order in determining arrival time. Therefore, based on agent-aware
attention, each agent is able to perceive its own identity and selectively
attend to the more relevant information from its neighbors, capturing
multi-agent interactions for the arrival sequencing problem.

For the arrival sequencing problem, the proposed multi-agent model
first takes multiple trajectories in the traffic scene as an input sequence:

1 ! 1
X o= (X, oo X e Xy e Xy oo, X) ®)

where x| € R is observed features of agent / at timestep ¢ and

d, is the number of features. Specifically, in this paper, X is repre-
sented as multi-agent trajectories with n agents, 12 timesteps, and 8
features per timestep. Subsequently, agent-aware attention can help the
proposed model practically assign each aircraft an individual arrival
time by maintaining agent identities and understanding multi-agent
interactions. Therefore, an output sequence is given as:

Y =G 9) ©

where §, is an ETA of aircraft / at the current timestep 7.

To ensure that assigned times satisfy the appropriate separation
between multiple aircraft for arrival sequencing, we propose to use
the combined loss function by adding separation loss to Mean Squared
Error (MSE) loss during training. The separation loss acts as a soft
constraint to impose the separation requirement between leading and
trailing aircraft. To train the model, we propose to use the com-
bined loss function by adding separation loss to Mean Squared Error
(MSE) loss. The separation loss acts as a soft constraint to impose the
separation requirement between leading and trailing aircraft.

Ecombined = w[’MSE +d- w)[:sep (10$)

n
1 N

Emse = Z(YI - an
=1

Loy =2 855, (12)

P9
PO Tyep = 19, = Fgls 1 19, = Pl < T,
HOARAES { wrowr o pooTan e 13)
R otherwise

where o is the weight between two loss functions. y,, y, are the actual
arrival time recorded in historical data and the predicted arrival time
of agent I, respectively. T,,, is the runway separation requirement
based on Table 1 (Park and Lee, 2023). Herein, we take a mixed
training strategy that utilizes the combined loss and MSE loss for better
performance than sticking to a single loss function. For example, the
model is trained based on the MSE loss function for the first 40 epochs
and then trained after switching to the combined loss function for the
remaining 60 epochs. Performance analysis over different mixed ratios
of loss functions is covered in the following section.

The neural network structure of the proposed model is summarized
in Fig. 3. The original Transformer (Vaswani et al., 2017) adopted
the encoder-decoder architecture. In practice, a decoder that uses
previously generated outputs is not essential for our task that requires
a single prediction. Additionally, it is noted that there is no significant
performance difference with or without a decoder. In this regard, the
proposed multi-agent model in this paper adopts only a Transformer
encoder with the agent-aware attention mechanism. The encoder has
multiple identical layers, each composed of two sublayers: a sublayer
of multi-headed agent-aware attention and a sublayer of feedforward
neural network. Residual connections and layer normalization are im-
plemented after each sublayer. By taking an input sequence, the time
encoder generates the timestamped sequence of the observed trajec-
tories to provide the timestep corresponding to each element in the
given input sequence. From the time-encoded sequence of observed
trajectories, the queries, keys, and values are obtained and fed into the
agent-aware attention sublayer. Lastly, by taking the encoder’s output,
a Multi-Layer Perceptron (MLP) is used to provide a final prediction,



H.-C. Choi et al.

Table 1
Runway separation on a single runway (arrival after arrival in the same direction).

Lead/Trail Light Medium Heavy Super
Light 120 120 120 120
Medium 180 120 120 120
Heavy 180 120 120 120
Super 180 180 120 120

a list of arrival times for all agents. Additionally, an arrival sequence
is then determined by sorting these ETAs in ascending order, assigning
earlier ETAs to earlier landing slots.

The detailed information for the model implementation is as fol-
lows. The number (N) of identical encoder layers is 3. All queries, keys,
and values have a dimensionality of 512. The feedforward layers are
set to a dimension of 1024, and the hidden layers in the Multi-Layer
Perceptron (MLP) use dimensions of (512, 256). The multi-headed
attention employs 16 heads (m = 16), and the dropout rate is set as
0.1 for regularization. Finally, during the model training process, the
backpropagation method calculates the gradients of the error function,
and the ADAM optimizer is used to update the internal parameters of
neural networks and thus minimize the loss function (Kingma and Ba,
2014).

4. Results and discussion

To test the methodology described in Section 3, this section consists
of three experiments. For the first experiment, we conduct comparative
experiments to demonstrate the ETA prediction performance of the
proposed model compared to existing models. Second, we measure
sequence similarity to evaluate how well the proposed model emulates
the ATC’s decision and compare it to the baseline model, Pairwise
Preference Learning (PPL) (Jung et al., 2018). For the last experi-
ment, we prepare the test dataset for arrival sequencing and use it for
comparative analysis based on the actual ATC feedback.

4.1. ETA prediction

For the ETA prediction experiment, we first implement comparison
models. For single-agent prediction models, Gradient Boosting Machine
(GBM) is chosen as a conventional machine learning model, while
Transformer is selected as a deep learning model. Based on the liter-
ature on data-driven ETA prediction (Wang et al., 2020b; Choi et al.,
2023b), GBM typically outperforms other conventional models such
as multiple linear regression, random forests, and k-nearest neighbors.
Similarly, Transformer-based models show the best performance over
other deep learning models such as long short-term memory and a gen-
erative adversarial network (Giuliari et al., 2021; Deng et al., 2024a).
Therefore, we select GBM and Transformer as our comparison models
over other models. GBM is a widely used ensemble learning model that
combines several weak models (Friedman, 2001). The decision tree
model is commonly employed as a foundational model (i.e., a weak
model) in GBM. The main idea behind GBM involves the incremental
inclusion of decision trees in the ensemble model, with a focus on
correcting the errors made by the preceding trees. Hence, in the appli-
cation of ETA prediction, GBM calculates the discrepancy between the
predicted ETA and the Actual Time of Arrival (ATA) from the previous
iteration and constructs a new decision tree based on this residual to
enhance the accuracy of the predictions. The Transformer-based model
highly relies on the attention mechanism (described in Section 3.1)
which can prioritize the most relevant parts of the data sequence for
accurate prediction. Lastly, for multi-agent prediction, we choose the
agent-aware attention mechanism using only MSE loss as a comparison.

We perform the ETA prediction experiment using two datasets
(southeast and northwest) described in Section 2.2. Given that each
sample typically comprises multiple aircraft, the single-agent models,
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which are capable of handling only one aircraft at a time, need to gener-
ate predictions individually for each aircraft in the sample. In contrast,
the multi-agent model produces ETAs for all aircraft in the sample with
a single prediction. For comparative analysis, all models are trained and
tested on the same dataset split for training, validation, and testing, and
the hyperparameters of the comparison models are carefully selected to
ensure a fair comparison. The deep learning models using self-attention
and agent-aware attention basically adopt equivalent parameters to the
proposed model, such as the dimension of the model, the number of
encoder layers, the number of heads, and the number of epochs for
training. Subsequently, by adjusting the learning rate within the range
of 107 to 1073, we evaluate whether the loss values for the three
models (self-attention, agent-aware attention with MSE loss, and the
proposed model) reach a specific level where further training yielded
negligible performance improvement (i.e., the loss curve flattens out).
This convergence indicates that the model had fully learned from the
given data. Through these experiments, we identify 10~> as the learning
rate that leads to convergence for three neural network-based models.

However, it is noted that GBM is a conventional machine learning
model with distinct hyperparameters such as the bagging fraction, fea-
ture fraction, and maximum number of leaves. In this regard, we tune
these hyperparameters separately from the neural network-based mod-
els. To align the experimental setup with the previous three models,
both the bagging fraction and feature fraction are set to 1, representing
all available features and data are considered during training. For the
maximum number of leaves, which controls the complexity of the GBM
model, we compare MSE loss values by varying this parameter between
30 and 300. Based on these experiments, we set the maximum number
of leaves to 250.

For the proposed model, since we employ the combined loss func-
tion and the mixed training strategy, there exist more hyperparameters
to be tuned. Firstly, we conduct a sensitivity analysis by changing
the weight (w) of the MSE loss in Eq. (10). Although we select a
weight of 0.5 based on the smallest loss value in this paper, it is
important to note that the impact of weight selection is not significantly
meaningful, especially when considering the fluctuations in loss values
after convergence. In addition, we conduct a performance analysis on
different mixed ratios of loss functions to determine the best ratio.
The performance of the model is evaluated in terms of both the Mean
Absolute Error (MAE) and the separation accuracy. The separation
accuracy is calculated by dividing the number of samples in which
every pair of leading and trailing aircraft in a given traffic scene
satisfies the separation requirement by the total number of samples.
As an example, the performance analysis result using the southeast
dataset is summarized in Fig. 5. The worst performance is observed
when using the combined loss function alone, and the best performance
is obtained when the ratio is 3:7, which is significantly better than the
only MSE loss function used. Therefore, it is found that by taking the
mixed training strategy, the model can achieve better performance even
if it is trained for the same 100 epochs.

The ETA prediction results are evaluated using four different met-
rics. In addition to the MAE and separation accuracy mentioned above,
the Root Mean Squared Error (RMSE) and the average violation time
are also considered. The primary difference between MAE and RMSE
lies in the fact that RMSE is more sensitive to outliers and imposes
greater penalties on larger errors, whereas MAE assigns equal treatment
to all errors. Hence, MAE and RMSE are useful for assessing overall
performance and for reducing significant errors, respectively. Secondly,
while the separation accuracy only determines whether each sample vi-
olates the separation requirement, the average violation time measures
how much the violation deviates from the separation minimum based
on Eq. (12).

Table 2 summarizes the ETA prediction performance of the compar-
ison and proposed models. The bold entries are used to highlight the
superior performance in comparison to other models, primarily indi-
cating the proposed model. Compared to the original model with the
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Table 2
Overall performance of ETA prediction.
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Model

Single-agent

Multi-agent (Agent-aware attention)

Landing direction Metrics GBM Self-attention MSE loss only Proposed
MAE (s) 37.1550 34.0288 20.5228 17.7091
RMSE (s) 57.5425 56.5080 26.4195 24.4290
Southeast
Sep. acc. 0.8101 0.8108 0.8936 0.9212
Avg. violation (s) 41.9096 41.4721 16.4680 16.6773
MAE (s) 50.2030 46.2987 18.0253 14.8618
Northwest RMSE (s) 74.3045 72.2432 22.3079 18.6480
Sep. acc. 0.7770 0.7742 0.9125 0.9373
Avg. violation (s) 44.1212 42.1675 14.1415 13.3767
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Fig. 5. Performance difference with respect to the usage of different loss functions.

MSE loss function, the proposed model employing the combined loss
function and the mixed training strategy demonstrates better perfor-
mance in both datasets. Furthermore, the multi-agent models perform
much better than the single-agent models, which can be evidence of
the single-agent model’s inability to capture varying ETAs in different
traffic conditions accurately. In other words, the single-agent ETA pre-
diction models focus only on individual aircraft independently, whereas
the multi-agent models consider multiple aircraft simultaneously within
a given traffic scenario and try to understand their relationship. More-
over, based on the series of ETAs and separation constraints, the
proposed model can closely emulate the ATC’s decision made for the
given traffic situation, leading to the capability to effectively handle
varying ETAs caused by different traffic situations.

Although not as good as the multi-agent models, the separation

accuracy of the single-agent models is higher than expected. This is
attributed to the fact that, in many cases where the traffic density is
not heavy, there exists a time margin between aircraft (as shown in the
blue histogram in Fig. 6), and therefore prediction errors do not cause
the separation to be violated. However, in terms of average violation
time, significantly large errors are observed in the single-agent models,
while the degree of violation time in the multi-agent models is within
an acceptable range based on the actual operation results (the orange
histogram in Fig. 6). It is important to note that the results are subject
to errors inherent in the ADS-B system and processing.

One interesting observation is that the single-agent models perform
better on the southeast data, while the multi-agent models show bet-
ter performance on the northwest data. One of the main differences
between the two datasets is that the average flight times for the
northwest and southeast datasets are 1,437 and 1,182 s, respectively.
In this regard, longer flight times in the northwest dataset can have
an adverse impact on the prediction accuracy of single-agent models
because there could be greater variation in ETA. However, despite
longer flight times, the multi-agent models perform better in this

100 200 300 400 500 600 700
Runway separation (sec)

Fig. 6. Histogram of runway separation between leading and trailing aircraft on the
same runway (minimum separation time: 120 s). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

dataset. To understand the performance difference, it is important to
understand the operational complexity in the two cases. When landing
in the northbound direction, aircraft coming from up to four entry fixes
simultaneously merge at the Initial Approach Fix (IAF). Conversely, in
the southbound case, aircraft from three entry points (KARBU, GUKDO,
and OLMEN) align first before merging with aircraft from REBIT at
the IAF. Therefore, in the northwest dataset with lower operational
complexity, the multi-agent models can capture traffic situations better,
leading to more accurate ETA predictions. This is another evidence to
show the importance of multi-agent models in ETA predictions.

The proposed model is also demonstrated with dynamically chang-
ing traffic scenarios, where the aircraft state information and the air
traffic situation, including the number of aircraft operating in terminal
airspace, are continuously updated. Through dynamic scenarios, it
can be investigated how accurately the predicted ETAs and landing
sequence are updated. Note that the landing sequence is obtained by
sorting ETAs produced by the proposed model. Fig. 7 illustrates six
consecutive air traffic scenes in 90-s intervals, showing the different
colored aircraft with their ETA, ATA, and landing order. The predicted
and actual landing orders are indicated in square brackets next to ETA
and ATA, respectively.

In the first scenario, multiple aircraft from two entry fixes (REBIT
and OLMEN) are continuously approaching the airport (ICN). In the
first scene, since Aircraft 3 (AC#3) is closely following AC#1, the
proposed model predicts the ETA of AC#3 and the landing order for
the second place, which is different from the ATA and actual order.
This false prediction is immediately corrected in the second scene by

observing AC#3 deviates from the same path as AC#1. It seems that the
ATC adjusts the landing sequence later due to certain reasons, rather
than the prediction being inaccurate, and the proposed model can
quickly respond to this dynamic change. Additionally, in the first scene,
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Fig. 7. Dynamic scenario 1 for ETA prediction and dynamic arrival sequencing.
web version of this article.)

AC#6 is ahead of AC#7 in the landing sequence, which likely reflects
the ATC preference to prioritize aircraft from other entry fixes over
aircraft from OLMEN in terms of speed and energy management (Choi
and Hwang, 2024). Although AC#7 in the first scene is in a similar
position to AC#8 in the sixth scene, their estimated arrival times are
significantly different, determined based on different traffic conditions.
We can see in the 3rd through 5th scenes that AC#7 takes a path-stretch
vectoring toward the GUKDO procedure to maintain separation from
AC#6. Meanwhile, AC#8 does not need to be vectored off from the
assigned route.

In Fig. 8, the second scenario shows consecutive aircraft coming
through GUKDO and OLMEN. AC#1 through AC#5 are already aligned
in the first scene. AC#3 follows a path similar to AC#2, but their
course angles differ slightly. The proposed model seems to be unable to
account for this aspect, leading to a large error in the ETA prediction.
Subsequently, this error is corrected in the next scene by capturing
the difference in the paths of the two aircraft over time. Similarly, in
the fourth scene, ETAs of AC#6 and AC#7 are predicted to violate
the separation requirement, which is then adjusted based on their
positional separation in the subsequent scene. This demonstrates that
even if the proposed model makes some errors due to a lack of future
information, it can correct the errors over time in a real-time operation.
Moreover, scenes 3 to 6 depict a dynamically evolving traffic situation,

Latitude

Latitude

Latitude
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(For interpretation of the references to color in this figure legend, the reader is referred to the

with the aircraft (AC#1 and AC#2) arriving at ICN and the aircraft
(AC#9, AC#10, and AC#11) newly entering the terminal airspace. The
snapshots present that the proposed model can precisely predict ETAs
and the resultant landing sequence in consideration of landing aircraft
removed from each scene and new incoming aircraft added to each
scene. In other words, this indicates that not only real-time ETA pre-
diction but also dynamic arrival sequencing can be done concurrently
by the proposed model.

4.2. Sequence similarity

In the previous section, we show that the proposed model can
provide sequencing advisories as well as ETAs in real-time operations.
However, in terms of performance, we mainly focus on ETA prediction
and its accuracy, but resultant landing advisories are not extensively
studied. Hence, in this section, we will quantitatively evaluate how
accurately the proposed model can emulate ATC’s decision relative
to the existing model. This quantitative analysis should be performed
using metrics that can calculate the degree of similarity between the
estimated arrival sequences and the actual arrival sequences (the actual
decisions of the ATCs recorded in the ADS-B data). In this regard, for
sequence similarity analysis, we employ two evaluation metrics: (i)
the Kendall rank correlation coefficient (Kendall, 1938) and (ii) the
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Fig. 8. Dynamic scenario 2 for ETA prediction and dynamic arrival sequencing.

Spearman’s rank correlation coefficient (Spearman, 1961). Both are
non-parametric rank statistics without specific assumptions about data
distribution and assess the monotonic relationship between two sets of
ordinal data. Additionally, these metrics are widely used to evaluate
arrival sequencing (Jung et al., 2018; Du et al., 2023). The Kendall
rank correlation coefficient is given as

pz MM (14)

%n(n -1
where n, and n; correspond to the number of concordant pairs and
discordant pairs, respectively. n represents the length of the landing
sequence (i.e., the number of arriving aircraft). On the other hand, the
Spearman’s rank correlation coefficient is defined as

B 66(c’,0)
n(n? —1)

where 6(¢’,0) = Z:;I(Gl (r) — o(r))?, and ¢’ and o are the predicted
arrival sequence and the actual arrival sequence, respectively. Both
coefficients range between —1 and 1, and the sign and magnitude
of the value are related to the direction and strength of association,
respectively. For example, +1 indicates that two arrival sequences have
exactly the same rankings.

For comparison, we select two baseline models. One is First-Come
First-Served (FCFS) sequencing estimated by a single-agent ETA pre-
diction model, and the other is the Pairwise Preference Learning (PPL)
model, the foremost data-driven approach to emulate ATC preference

(15)

and decision. PPL consists of multiple pairwise preference models based
on entry fixes, which are Binomial Logistic Regression (BLR) models.
All pairs of aircraft in traffic situations are fed into the corresponding
pairwise preference models to compute the preference probabilities.
The final score of each aircraft obtained by summing all probabilities
is then compared with others to determine the overall sequence of
arrivals. The experiment is carried out on the same dataset described
in Section 2.2. We calculate two correlation coefficients for all testing
samples and illustrate their distribution in two histograms. As shown
in Fig. 9, in both correlation coefficients, the distributions of the
proposed model are the most right-skewed, followed by FCFS, and
finally PPL. Since closer to +1 indicates greater similarity between two
arrival sequences, PPL is the least accurate in terms of emulating ATC’s
decisions for arrival sequencing.

To provide a more comprehensive analysis, we examine this result
more closely by categorizing it according to traffic density. In this
study, we classify traffic density based on the number of aircraft, with
light traffic referring to 5 or fewer aircraft, medium traffic referring
to 10 or fewer aircraft, and heavy traffic referring to more than 10
aircraft. The results are summarized in Tables 3 and 4. We observe
that as traffic density increases, the PPL’s values of both coefficients
are reduced sharply in comparison to the other two models. In order
to ensure that the difference in performance does not originate from
the choice of classification models or the way of training, we thor-
oughly train the multiple models, including GBM and Support Vector
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Table 3
Kendall rank correlation coefficient (average).
Traffic density PPL FCFS Proposed
Light 0.8790 0.8909 0.9894
Medium 0.8231 0.8601 0.9734
Heavy 0.7643 0.8324 0.9584
Overall 0.8305 0.8649 0.9760
Table 4
Spearman’s rank correlation coefficient (average).
Traffic density PPL FCFS Proposed
Light 0.9278 0.9394 0.9984
Medium 0.9137 0.9328 0.9840
Heavy 0.8974 0.9179 0.9686
Overall 0.9154 0.9325 0.9860

Machine (SVM), using a ten-fold cross-validation, and testing results are
presented in Table 5. It is noticed that certain cases exhibit the same
level of accuracy, and the average accuracy of three different models
is almost identical, 97.1%. This implies that the performance of the
classification models nearly reaches the Bayes error rate (Fukunaga,
2013). The Bayes error rate is the minimum theoretical error rate
(i.e., fundamental limit) achievable for a given dataset due to the
inherent overlap between classes in the data, which suggests that the
classification models perform effectively.

Since there are no performance issues with the pairwise preference
models, we need to focus on how PPL determines the arrival sequence.
PPL can accommodate the actual ATC’s cognitive process of making
pairwise comparisons for arrival sequencing. However, the problem
seems to lie in PPL’s insufficient capabilities to capture dependence
between decisions about the landing order of each aircraft. This means
that PPL makes the sequencing decision independently based on the
ranking of the scores, although the landing order of one aircraft is
heavily influenced by those of other aircraft. This issue is illustrated
by the following examples in Fig. 10, where a filled dot indicates the
current position of each aircraft, and an asterisk indicates the future
position of the aircraft in 5 min.

In Fig. 10(a), the predicted landing order of AC#2 and AC#5 is
reversed compared to the actual one. It is noted that AC#4 and AC#5
fly very close together, and hence it is difficult for AC#2 to get between
them based on the estimated arrival sequence. Therefore, even though
AC#5 has a slightly higher score than AC#2, AC#2 can proceed with
direct-to vectoring after AC#1 and AC#3, which are already vectored

10

off the designated routes. Note that this frequent vectoring based on
area navigation (RNAV) and the point merge system is a common
operation in terminal airspace (Deng et al., 2022; Choi et al., 2023a),
leading to variability in aircraft travel times. In Fig. 10(b), AC#10 and
AC#11 are in a similar situation to AC#2 and AC#5 in the previous
scene. When comparing AC#10 and AC#11 based on PPL, AC#10 has
twice the score of AC#11, supporting that AC#10 should arrive before
AC#11. However, looking at the positions (marked with asterisks)
5 min later, AC#8, AC#9, and AC#11 are all aligned in a straight line.
When AC#9 takes a slight path-stretch vectoring to maintain separation
from AC#8, AC#11 follows closely behind AC#9. Consequently, unlike
AC#2, AC#10 does not directly head toward the IAF to overtake
AC#11. In this regard, the separation between the multiple leading
aircraft and the resulting time slots available to the trailing aircraft
should be considered for accurate sequencing predictions.

This analysis highlights the importance of the proposed model in
the sense that our attention-based model with the separation constraint
can address the observed limitations. This is evidenced by the two
coefficients significantly greater than those of the other two models. As
a side note, it is noticed that FCFS shows two coefficients greater than
those of PPL at medium and high traffic densities, which means that
the predicted arrival sequences by FCFS are more similar to the actual
arrival sequences than those by PPL. However, this observation raises
doubts in the sense that a single-agent ETA prediction model does not
consider the priorities or interactions among the incoming aircraft. A
possible explanation is found in the existing literature (Du et al., 2023).
This study analyzes sequencing performance with respect to different
ETA accuracy and claims that an improvement in prediction accuracy
results in a landing sequence closer to an actual landing sequence, as
well as a reduced average delay. Therefore, it is attributed to the fact
that the enhanced accuracy of the ETA prediction model, which utilizes
the self-attention mechanism and accommodates more features, can
lead to an increased similarity to actual landing sequences.

4.3. Arrival sequencing

In this section, the proposed model is compared with the prominent
optimization algorithms in terms of average delay as well as sequence
similarity. For this experiment, we first prepare 50 testing samples (25
for the northwest and 25 for the southeast) labeled with a scheduled
time of arrival for each aircraft. For comparison, three different algo-
rithms are considered: (i) FCFS, (ii) Receding Horizon Control (RHC),
and (iii) Constrained Position Shifting (CPS). The FCFS-based arrival
sequence is obtained by sorting ETAs generated by a single-agent ETA
prediction model in non-descending order, which is used as an initial



H.-C. Choi et al.

Journal of Air Transport Management 128 (2025) 102828

Table 5
Accuracy of pairwise preference models.
Models KARBU-KARBU KARBU-GUKDO KARBU-OLMEN KARBU-REBIT GUKDO-GUKDO
BLR 0.9971 0.9806 0.9663 0.9531 0.9918
SVM 0.9971 0.9791 0.9652 0.9544 0.9908
GBM 0.9971 0.9817 0.9652 0.9560 0.9917
Models GUKDO-OLMEN GUKDO-REBIT OLMEN-OLMEN OLMEN-REBIT REBIT-REBIT
BLR 0.9587 0.9469 0.9912 0.9302 0.9880
SVM 0.9587 0.9483 0.9916 0.9299 0.9880
GBM 0.9609 0.9468 0.9914 0.9285 0.9873
Table 6
Arrival sequencing performance evaluation.
Metrics FCFS RHC (N, =2) Proposed CPS (k =3)
Avg. avg. delays 472.9249 s 425.9315 s 430.1040 s 404.7632 s
Avg. Kendall’s 7 0.8766 0.8643 0.9794 0.8364
Avg. Spearman’s p 0.9366 0.9281 0.9902 0.9115

Response time 29.45 + 8.986 ms

0.164 + 0.221 s

4.094 + 0.383 ms 1.630 + 0.817 s
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Fig. 10. Illustrative examples of false prediction generated by PPL.

arrival sequence for the following algorithms. The RHC algorithm is not
only computationally efficient but also robust in dynamic and uncertain
environments by iteratively optimizing the arrival sequence within the
dynamic horizon (Hu and Chen, 2005). One of the key parameters in
the RHC algorithm is the length of the receding horizon N,,., which
determines the trade-off between performance and computational cost.
CPS efficiently creates an optimized arrival sequence by allowing an
aircraft to be moved up to a specified maximum number of posi-
tion shifts (x) from its initial arrival sequence to prevent excessive
exploration of the arrival sequence (Balakrishnan and Chandran, 2006).

The four different methods are applied to the testing samples and
the resulting average delay is shown as a box plot in Fig. 11. In terms
of the interquartile range and median, RHC is slightly worse than
CPS, whereas the proposed model and FCFS show significant differ-
ences from them. For numerical comparison, the mean of the average
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Fig. 11. Performance comparison in terms of average delay.

delays of all samples and the average of the two rank correlation
coefficients for sequence similarity are calculated, and the response
time is also recorded to evaluate computational efficiency. The overall
results are summarized in Table 6. In three comparison algorithms, it
is observed that sequence similarity decreases as the average delay is
further minimized. This could indicate that excessive rearrangement
of the landing sequence to optimize the objective function may be
inappropriate or impractical in an aspect of actual air traffic control.
On the other hand, although the delay of the proposed model increases
by 0.98% compared to that of the RHC algorithm, both coefficients
remain significantly higher than the others. The computation results
indicate that all methods are generally applicable to real-time systems,
and CPS can further reduce the computational burden by carefully
tuning «, with a slight trade-off in sequencing performance (i.e., Avg.
delays). It is important to note that the response time includes both
the computation of ETA predictions (for »n incoming aircraft, the single-
agent model iterates n times, while the multi-agent model computes just
once) and arrival sequencing optimization. Therefore, it is determined
that, by slightly compromising effectiveness, the proposed model can
achieve a higher level of similarity and lower computational cost than
the other methods.

Relatively small coefficients of other methods seem to originate
from their inability to accommodate the ATC’s decision process and
preferences in given traffic situations. To support this point, the feed-
back on the samples is obtained from two actual ATCs and two ATC
instructors. Participants are asked to choose one of the multiple ar-
rival sequences without knowing which model created which arrival
sequence and to provide the main considerations for their decisions. For
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Fig. 13. Operationally infeasible assigned time for AAR762.

illustration, we first analyze two cases based on ATC feedback. Fig. 12
displays the traffic scene with five aircraft and the actual and predicted
arrival sequences for the current traffic situation. Among TWB164
coming from OLMEN and APJ1 coming from GUKDO, both RHC and
CPS suggest that TWB164 land first, which is different from the actual
arrival sequence. However, depending on the ATC’s preference and the
complexity of control, the ATC can decide to vector APJ1 directly to
the IAF like AAR762 and AAR748, thereby improving efficiency in air
traffic management. In this case, the arrival sequence estimated by RHC
and CPS is calculated to have a Kendall rank correlation coefficient of
0.8 and a Spearman’s rank correlation coefficient of 0.9. Furthermore,
this case can disclose potential issues that may arise when utilizing an
ETA prediction model and an optimization algorithm, respectively. The
optimized arrival sequence requires AAR762 to land in 3 min. However,
as shown in Fig. 13, it is practically infeasible for AAR762 to land in
3 min based on the travel time distribution of historical trajectories
passing through AAR762’s current position. This is caused by a large
prediction error in the ETA prediction model plus the predetermined
time window (i.e., the earliest possible arrival times of the aircraft)
allowed by the sequencing algorithms. Note that this issue is not
observed in our proposed model which can do both ETA prediction and
arrival sequencing simultaneously.

Similarly, in Fig. 14, seven aircraft come from OLMEN and GUKDO.
When comparing KAL1402 and VJC878, KAL1402 follows the leading
aircraft closely, and its speed is higher than VJC878. Furthermore, the
aircraft (VJC878) coming from the south is unable to descend due to
the aircraft departing the airport, while KAL1402 is able to descend
first. Therefore, it is determined that KAL1402 is positioned ahead

12

of VJC878. When comparing KAL320 and AAR8532, VJC878 can be
followed by KAL320 without any gaps along the STAR. However, if
AARB8532 is required to arrive first, many control actions are required
to maintain the safe separation between aircraft, increasing the work-
load and complexity. In this case, the arrival sequence estimated by CPS
is calculated to have a Kendall rank correlation coefficient of 0.8095
and a Spearman’s rank correlation coefficient of 0.9286.

Lastly, we analyze the frequency of arrival sequences chosen by
ATCs and their key considerations. It is observed that the proposed
model is chosen 4.19% more often than FCFS, 5.24% more often
than RHC, and 28.27% more often than CPS. This difference can
be interpreted as significant, considering that the models frequently
share the same arrival sequence. Subsequently, all considerations for
sequencing decisions in each sample are collected and summarized in
Fig. 15. This pie chart reveals that the considerations related to air
traffic control (ATC preference for specific traffic patterns, commu-
nication clarity, and complexity/workload of control) account for a
significant portion (43%) of the total. In addition, the consideration
(i.e., feasibility) to prevent impractical situations (e.g., Fig. 13) also
accounts for 14%. The key considerations of ATCs are essential for
effective and efficient real-world air traffic control and thus influence
ATCs’ decisions, which can result in a slight degradation in performance
but instead lead to smoother operations. In conclusion, optimization-
based algorithms cannot effectively account for ATCs’ considerations,
leading to a discrepancy between the actual landing sequence made by
ATCs and the landing sequence optimized by the existing algorithms,
while the proposed model can learn from the data and emulate the
actual operation.
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5. Conclusion

In this paper, we proposed a multi-agent model for Estimated Time
of Arrival (ETA) prediction and dynamic arrival sequencing by emulat-
ing Air Traffic Controllers (ATCs). To properly understand the interac-
tion between the air traffic management system and human operators
in complex traffic situations, we proposed an attention mechanism-
based approach with a mixed training strategy that utilizes both the
mean squared error loss and the separation loss functions. To demon-
strate the performance of the proposed model, we conducted extensive
experiments for ETA prediction and arrival sequencing with real air
traffic data. The experimental results demonstrated that the proposed
model can provide more accurate ETAs and more realistic landing
sequences in real time than existing algorithms. The sequence similarity
has been measured by two well-known rank correlation coefficients,
which shows the superiority of the proposed model in emulating ATC
decisions. Furthermore, the result of experiments with subject matter
experts for landing sequence selection in the given traffic samples
showed that ATCs choose landing sequences generated by the proposed
model more frequently due to actual operation-related considerations,
such as the complexity of air traffic control. The feedback from actual
ATCs showed that there are some key considerations that cannot be
directly incorporated into conventional optimization-based sequencing
algorithms, while the proposed model can effectively account for them.

In future work, the current model will be further elaborated by
incorporating meteorological information, such as wind and other
weather components, and operational information, including runway
occupancy and flight schedules. In addition, although departure aircraft

127°30E

13

08:00
May 04, 2019

07:20 07:30 07:50

(b) The actual and estimated arrival sequences
study 2.

have different routes and designated flight levels from arrival aircraft,
it could still constrain the operations of arriving aircraft or affect their
landing sequence. Hence, the position and altitude of the departure
flights will be considered as an additional feature to predict the
landing sequence more accurately. To further improve efficiency and
effectiveness, recently developed variants of Transformer (the state-
of-the-art models) will be incorporated into the proposed multi-agent
model. From the ATCs’ feedback and analysis, it is found that there
exists the ATC’s preference for certain control patterns. Integrating air
traffic control patterns into this study can lead to further advancement
of the air traffic management system. In this regard, the identification
and classification of air traffic control patterns in terminal airspace will
be a worthwhile study. Lastly, the successful emulation of an air traffic
controller in this study can have the potential to be extended to delay
prediction and propagation where the impact of air traffic control is
critical.
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