Predicting Taxi Times
Using Airport Surface Movement Data
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Abstract—Taxi time prediction is an essential component of
efficient airport surface traffic management, especially for arrival
and departure scheduling. In this study, the surface movement
data at Incheon International Airport is analyzed to find taxi
routes and taxi speed distributions, and then a taxi time pre-
diction model is developed that can reflect the current surface
traffic conditions. The airport surface is modeled using a node-
link structure so that a route is expressed by a sequence of nodes
and links. Previous studies have mainly estimated taxi times based
on the average speed of each link, or developed prediction models
using regression or machine learning techniques with limited
traffic variables. Building on these approaches, this study uses a
decision tree-based model, eXtreme Gradient Boosting, to more
accurately predict the taxi time by incorporating the ground
traffic conditions. Features are divided into two categories, one
is the real-time observational features that are captured at the
initial time snapshot of the target aircraft such as total number
of aircraft on the surface and the number of aircraft along
the taxi route. The other is the route-specific static features
such as route lengths and number of links. In addition, surface
movement statistics obtained from the dataset such as average
taxi speeds are included in these static features. The importance
of each feature is investigated and with the final feature set of
13 features, an R? value of 0.74 was achieved, where the taxi
times are predicted within +20% for most of the routes. The
proposed method is expected to be an effective tool for improving
the surface traffic management such as arrival and departure
scheduling or traffic flow management.

Index Terms—Taxi Time Prediction, Node-Link Model, Airport
Surface Operations, ASDE-X, Feature Engineering, XGBoost
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Fig. 1: Number of departing aircraft by hour of day
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Fig. 2: Taxi time by hour of day

I. INTRODUCTION

The continuous growth in air traffic demand, coupled with
the physical limitations of the airport infrastructure, has led to
increased surface congestion at major airports [1]. Taxi time
has become a critical factor in airport operational efficiency
and flight schedule management, directly impacting various
aspects of airport operations, such as take-off scheduling and
runway capacity management. In particular, uncertainty in taxi
times can cause takeoff delays and bottlenecks in surface
traffic flow, which in turn adversely affect the overall efficiency
of airport operations.

To reduce surface congestion and improve flight punctuality,
it is essential to predict taxi times quickly and accurately.
Accurate taxi time prediction is a critical foundation for
Airport Collaborative Decision Making systems [2], helping



to optimize runway and taxiway traffic and reduce departure
queues and delays.

Surface operational conditions at airports exhibit different
patterns depending on various factors such as the day of the
week, time of day, and the number of aircraft on the ground.
These operational characteristics are expected to directly influ-
ence surface movement flows and, consequently, taxi times. As
can be seen in Figs. 1 and 2, average taxi times vary depending
on the time of day.

Therefore, leveraging airport operational patterns allows for
more precise taxi time prediction, and it is necessary to design
prediction models that reflect such patterns. This study aims
to incorporate the patterns of surface traffic in terms of the
statistical taxi speed characteristics into the input features.

Previous studies have modeled airport surfaces using node-
link structures and proposed taxi time prediction methods
based on average link speeds [4], [5] or polynomial regression
models [6]. [3] produced a statistically significant results by
first predicting the size of the departure queue and estimating
the taxi-out time using the queue size. In addition, some re-
search has used machine learning approaches such as random
forests to improve prediction accuracy [7]. These studies have
helped to improve the accuracy of taxi time prediction by
incorporating specific route characteristics or aircraft types.

Building on these previous approaches, this study proposes
a taxi time prediction method that comprehensively reflects
both the ground traffic conditions observable when the target
aircraft enters the initial node and the inherent route-specific
characteristics. This allows the model to predict the taxi time
without the need for complex forecasting of future surface
conditions. While machine learning techniques such as XG-
Boost have been used in previous studies [8], [9], this study
further incorporates a node-link-based network structure into
the feature generation process to explicitly capture the struc-
tural characteristics of individual taxi routes. By leveraging the
model’s fast training and inference capabilities, the proposed
system aims to enable scalable, potentially real-time taxi time
prediction in large airport environments.

The remainder of this paper is organized as follows. Sec-
tion II describes the dataset and the preprocessing procedures.
Section III defines the problem and presents the key feature
engineering process. Section IV details the development of the
prediction model, while Section V presents the experimental
and performance evaluation results. Finally, Section VI con-
cludes the study and suggests directions for future research.

II. DATA AND PROCESSING
A. Source of Data

This study uses surface movement data of aircraft operating
at Incheon International Airport (ICN). The primary data
sources include surface trajectory data collected by the Airport
Surface Detection Equipment, Model X (ASDE-X) [10], and
airport infrastructure information provided by the Aeronautical
Information Publication (AIP) [11]. The ASDE-X data contain
high-resolution records of aircraft position, time, speed, and
other variables, enabling precise tracking of ground movement

paths. The AIP data provide detailed geographic information
on gates, ramps, taxiways, and runways, which has been
used to structure ground movement paths into a node-link
framework.
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Fig. 3: Number of departures and average taxi out time by
month

The ASDE-X data used in this study consists of 47,984
departure trajectories collected from March to December 2022
for which taxi routes could be clearly identified. The average
number of aircraft per day over the entire period was 159.

These data were preprocessed based on the method pro-
posed in [12]. In the filtering step, consecutive trajectory points
with a spatial interval of 10 meters or less were removed,
as they were considered potentially redundant or erroneous.
As a result of this smoothing and filtering procedure, the
average time interval between the remaining trajectory points
was approximately 3.7 seconds. In this study, the preprocessed
data were further interpolated to a 1-second interval, and the
interpolated data were used for the analysis.

During this period, the traffic volume steadily increased as
the air travel recovered from the COVID-19 restrictions as
shown in Fig. 3a. The average taxi out time peaked in August
and remained steady as shown in Fig. 3b.

B. Airport Node-Link Model Construction

In this study, node-link model constructed based on AIP
data of ICN [13], as shown in Fig. 4 was used. The model was



§

e

O Initial Node
O Final Node

Fig. 5: Node-link model of ICN

developed by referencing the ramp area and taxiways indicated
in the AIP, using the geographic coordinates and names of the
gates, and by defining intersections as nodes using Google
Earth Pro to manually obtain structured latitude and longitude
data. As shown in Fig. 5, the model consists of 775 nodes and
1,007 links. Each node is classified as gate, ramp area, taxiway,
or runway. This model allows for the conversion of aircraft
surface trajectories expressed in a sequence of latitudes and
longitudes into a sequence of nodes and links, which enables
the extraction of quantitative features such as route length and
number of links.

To map the latitude and longitude coordinates of the ASDE-
X data to the node-link structure, the approach described
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Fig. 6: Speed distributions

in [14] was used. Basically, if a coordinate point is inside
a rectangle that encloses a link with a certain threshold, the
point is considered to traverse the link. This approach enabled
the identification of aircraft positions relative to the network
structure to analyze the speed of the aircraft, the stop status,
and the presence of a nearby aircraft. Metrics such as average
speed within each link, speed distribution characteristics, and
time to traverse the links were also quantified. These data
provide a critical foundation for a quantitative understanding
of ground traffic flow.

Figure 6 shows the taxi speed distribution at two different
links. The speed distribution for the most used link shown in
Fig. 6a closely follows a Gaussian distribution, while the one
for the least used link shown in Fig. 6b shows some variations.
In general, the speed distributions at most of the links were
close to a Gaussian distribution.

C. Trajectory Data Pre-processing

Some of the trajectories in the data set were incomplete or
anomalous. For departures, only the trajectories that originate
from gates and pass through runways are filtered. These
trajectory data were then mapped to the node-link model as
previously mentioned. This preprocessing ensured the reliabil-
ity of the data and prepared them in a form suitable for model
training.



Fig. 7: Route example

D. Taxi Route Identification

Each aircraft’s taxi out path was identified based on its
initial node (start point) and final node (end point). The initial
node was defined based on the node-link model as the node
where the aircraft enters the taxiway from the ramp, that is
the last ramp area node. The final node was defined as the
node where it enters the runway from the taxiway, that is
the runway threshold node. An example of a taxi out route
is shown in Fig. 7. Even for identical initial/final node pairs,
actual taxi paths could differ, and such differences were taken
into account.

Figure 5 shows 15 initial nodes in yellow circles and 6 final
nodes in cyan circles. Total of 33 initial/final combinations and
56 routes were identified. During the data collection period,
Runway 16R/34L was not used for departures.

III. PROBLEM FORMULATION AND FEATURE
ENGINEERING

A. Problem Definition

Predicting taxi time is formulated as a regression problem
where the target variable is a continuous value measured
in seconds. This differs from classification problems, which
select from a set of discrete categories. The input variable
X consists of information available at the moment when the
aircraft enters the initial node including airport ground traffic
conditions and route-specific attributes. The output ¢ repre-
sents the expected taxi time for a flight, and their relationship
is expressed as in (1).

9= f(X) (1
B. Feature Design and Categorization

In this study, input features were systematically designed
to improve the prediction accuracy of taxi time. The features
were divided into two main categories. The first includes
real-time observational features, which capture airport traffic
conditions observable at the moment when the aircraft enters
the initial node. The second category consists of route-specific
features, which reflect structural characteristics inherent to
each taxi route.
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Fig. 8: Taxi route and features

Real-time observational features include the total number of
aircraft on the ground, the number of aircraft within 1 km of
the initial node, the number of aircraft on the planned route,
and the number of stopped aircraft. In addition, the average
and standard deviation of aircraft speed on the route are taken
into account, as well as congestion indicators such as the
number of aircraft per route length and the number of aircraft
near adjacent routes. Temporal information such as time of
day and day of week are considered. Aircraft Wake Turbulence
Category (WTC) is also included to reflect the variations in
the aircraft performance.

Route-specific characteristics represent structural attributes
that are fixed for each route, including the route id, total route
length, and the number of links that make up the route. In
addition, two features are constructed from the statistical data
analysis. As the aircraft speed distributions for each link are
obtained, the arithmetic means of each link’s average speed
and the standard deviation of speed are calculated to represent
the flow characteristics.

Figure 8 illustrates some of the key features along a taxi
route. The shaded blue segments represent the expected taxi
route from the initial node (green) to the final node (red).
White segments that are connected to the nodes that are part
of the route are the adjacent links. Multiple aircraft may be
on this route at this moment. Features such as the number of
aircraft on the route, the number of aircraft stopped, and the
mean and standard deviation of their speeds are included to re-
flect these traffic conditions. Especially, the speed differences
between segments can have a significant impact on the total
taxi time.

Table I and Table I summarize the real-time observational
features and static route-specific features defined in this study.
Each feature was input to the model in its original form
without normalization. In the table I, N, represents the
Nyoute disaggregated by dividing the sequence of links along
the route to start, middle, and end segments based on the
number of links, and by separately counting the number of
aircraft in each segments. Similarly, N,;. separately counts
the number of aircraft in five WTC categories, which are
light, medium, heavy, super, and unknown. This is expected
to increase the granularity of the features.



TABLE I: Real-Time Observational Features

Symbol Feature Description

Niot Total aircraft count Total number of aircraft present on the airport surface

Nnear Aircraft count near the initial node Number of aircraft located within 1 km radius of the initial node

Nroute Alircraft count on the taxi route Number of aircraft on the taxi route

Nseg Aircraft count per route segments Number of aircraft in start/middle/end segments (3 sub-features)

Nuwte Aircraft count by WTC Number of aircraft for five WTC classes (light/medium/heavy/super/unknown) on the taxi route (5
sub-features)

Nadj Aircraft count on adjacent links Number of aircraft located on all links adjacent to the route

Nstopped Number of stopped aircraft Number of aircraft that is slower than 3 knots along the taxi route

Pyen Aircraft count per route length Number of aircraft on the route divided by total route length

Vave Average speed Average taxi speed of all aircraft on the route
View Standard deviation of speed Standard deviation of the aircraft speeds on the route
Thour Time of day Hour-of-day (24 1-hour bins)
Tday Day of the week Day of week from Monday to Sunday
Awte WTC Target aircraft’s WTC
TABLE II: Route-Specific Static Features

Symbol Feature Description
Aid Route id Unique identifier for each taxi route
Riength Total route distance Total length of the route in meters

links Number of route links Number of links comprising the route
Vave,link taxi speed metric Mean of the average aircraft speeds calculated for each link on the route
Ve, link taxi speed variance metric Mean of the speed standard deviations calculated for each link on the route

Furthermore, Ve tink and Ve, 1ink in Table II were calcu-
lated by arithmetically averaging the average and the standard
deviation of speed for each link, respectively, based on the
data such as that shown in Fig. 6.

C. Taxi Route Selection and Dataset Filtering

The taxi routes of the aircraft were classified based on
the combination of initial node (start point) and final node
(end point). Even for the same initial/final node combination,
multiple routes could be used, and the usage ratio for each
route varied. An analysis of the average speed distributions for
the major routes showed that most of them closely followed
a Gaussian distribution. Figures 9 and 10 show the number
of uses per route for two initial/final node combination as pie
charts, and the average speed distributions as histograms. For
the first initial/final node pair, two routes existed where the
major route among the two has an 80% share. For the second
initial/final combination, only a single route existed.
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Fig. 9: Usage distribution among different routes for the same
initial/final node pair.

To ensure the reliability of the data and the stability of
the model training, taxi routes that were used more than 100

Route0
400 Routel

Route4

0 2 4 6 s ) 2 4 6 ]
Sped (knot) Speed (knot)

Fig. 10: Histogram of average speed distributions for selected
routes.

times for the same initial/final node combination were selected
for training and evaluation. Among the selected routes, only
samples whose taxi times did not exceed the 30 range of
the route-specific mean were retained, resulting in a total of
45,319 trajectory data points used for model training.

Even within the same initial/final nodes combination, each
route was treated as an independent learning target if the path
was different.

IV. PREDICTION MODEL DEVELOPMENT
A. Overview of XGBoost

In this study, a tree ensemble method based on gradient
boosting, namely eXtreme Gradient Boosting (XGBoost) [15],
was used to predict taxi times. Boosting sequentially combines
multiple weak learners to gradually improve prediction perfor-
mance, with each stage focusing on correcting the residuals of
the previous predictions. XGBoost is particularly suitable for
this task due to its excellent efficiency in terms of prediction
accuracy, training speed, and flexibility in handling different
input variables. In addition, the incorporation of regularization
terms helps prevent overfitting and enables stable learning
even with large datasets. These features make XGBoost highly
suitable for the taxi time prediction problem, where both




surface traffic conditions and route characteristics interact in
a complex manner.
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Fig. 11: XGBoost diagram

The XGBoost model operates as a nonlinear regression
model that takes an input matrix, X € RV **, consisting of N
samples and k features and predicts the taxi time, g;, for each
sample. The learning process is performed iteratively, and, at
each step, the prediction is updated by adding the output of a
newly trained regression tree to the previous prediction. This
process is mathematically expressed as:

3" =9 - fulw) @)

Where ;gf) is the cumulative prediction for the i-th sample
up to the ¢-th tree, n is the learning rate, and fi(x;) is the
output of the ¢-th regression tree trained to reduce the residual
error.

XGBoost minimizes a regularized objective function that
balances prediction accuracy and model complexity. To op-
timize this objective efficiently, the loss function #(y;,¥;) is
approximated using a second-order Taylor expansion:

_ 1
él('t) ~ ZZ(_t 1) + gl(t)ft(fﬂi) + §hl(-t)ft($i)2 3)
Here, gi(t) and hl(t) denote the first- and second-order
derivatives of the loss function with respect to the prediction
y; at stage t — 1.
The overall objective function to be minimized at each iter-

ation includes both the accumulated loss and a regularization
term (f:):

N
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The regularization term penalizes model complexity and
helps prevent overfitting. While the exact solution involves
computing optimal leaf weights and evaluating all possible tree
structures, these details are handled efficiently by the XGBoost
algorithm internally.

B. Training Setup and Input Feature

The input features were used without normalization and
were fed directly into the model. A detailed list of the features
can be found in Tables I and II. A total of 45,319 taxi trajectory
samples were used to train the model. The entire dataset was
randomly divided into training and test subsets in a 7:3 ratio.
The training data was used to optimize the model parameters,
while the testing data was used to evaluate the taxi time
prediction performance.

C. Model Training Process

XGBoost provides fast training speed and efficient parallel
processing, making it well suited for repeated experiments
with different hyperparameter combinations. The main hyper-
parameters used in this study are summarized in Table III.

TABLE III: Hyperparameter Settings for XGBoost

Parameter Value | Description

Learning rate 0.05 Tree contribution weight
Maximum depth 5 Max tree depth

Number of estimators 400 Number of trees

Subsample ratio 0.8 Row sampling ratio per tree
Feature subsample ratio 0.8 Column sampling ratio per tree

Hyperparameter tuning was performed using a grid search
method combined with 3-fold cross-validation. The best-
performing configuration was selected to build the final model.
Model training was performed using the prepared training
and validation dataset. During training, the XGBoost model
was iteratively optimized and performance was periodically
evaluated on the validation set to avoid overfitting. Early
termination was applied if no improvement was observed after
a certain number of epochs. After training, the final model
was evaluated on the separate test dataset using the Mean
Absolute Error (MAE), Root Mean Square Error (RMSE), and
Coefficient of Determination (R?) metrics.

V. RESULTS AND DISCUSSIONS
A. Feature Importance Analysis

Before constructing the XGBoost-based taxi time prediction
model, the prediction models performances are evaluated
using different combinations of input features. In the initial
experiments, the model was trained using only general features
such as the total number of aircraft on the airport surface,
the number of aircraft near the initial node, the time of day,
and the WTC of the aircraft. However, under these conditions,
the model showed limited predictive performance, with the R?
score staying near 0.6 and both the MAE and RMSE values
remaining relatively high.

Subsequently, when route-specific static features such as
route id, total route distance, and number of route links were
added to the input, a significant improvement was observed.
In particular, the inclusion of these route features led to a
sharp increase in the R? score, while MAE and RMSE were
significantly reduced. This suggests that, in addition to the
overall airport traffic conditions, the taxi route plays a critical
role in predicting the taxi out times.



TABLE IV: Feature Combination by Case

Feature Casel | Case2 | Cased | Cased | CaseS | Case6 | Case7 | Case8 | Case9 | Casel0 | Casell | Casel2
Niot v v v v v v v v
NTLE(ZT ‘/ \/ ‘/ \/ ‘/ \/
Nroute v v v v v v v v
Nieg v v v v v Y
N'Lutc v v v v v v
Nagj v v v v v v
N, stopped v v v v v v
P den v v v v v v
Vave v v v v
Viev v v v v
Thour v v v v v v
Tiay v v v v v v
Awtc v v v v v v
Aiqg v v v v v v
Riength v v v v v
links v v v v v
Vave,link v v v v v
Vdev,link v v v v v
TABLE V: Prediction Performance for Each Case
Metric Casel | Case2 | Cased | Cased | CaseS | Case6 | Case7 | Case8 | Case9 | Casel0 | Casell | Casel2
MAE 102.49 81.42 81.19 123.44 79.81 79.51 94.14 94.14 67.26 64.94 71.33 63.06
RMSE 132.51 | 108.47 | 108.40 | 156.55 | 106.36 | 106.20 | 117.49 | 117.49 88.87 86.29 94.19 83.90
R? 0.3804 | 0.5848 | 0.5853 | 0.1352 | 0.6008 | 0.6020 | 0.5129 | 0.5129 | 0.7213 | 0.7372 0.6870 0.7516
Table V shows the MAE, RMSE, and R? scores for twelve High
different feature combinations listed in Table IV. It can be Riengtn e i ————————
seen that the prediction accuracy improved significantly when Nrouce  —
route-specific features were included. Based on the experimen- Vaev |
tal results of different combinations of features, the final model Neot *—-—-
was trained using the full set of features with 13 traffic-related Niinks b
features and five route-specific features. Thour *____
Vave
The final model achieved an MAE of 63.1 seconds, an N .
RMSE of 83.9 seconds, and an R? score of 0.7516 in the N“”” 44—
test dataset. Considering that the average taxi time for the segrseart +— .
entire dataset is approximately 401.8 seconds with a standard Nseg —o- E
deviation of 170.1 seconds, the MAE is approximately 15.7% Vaveaini o 3
of the average and the RMSE is approximately 20.9%. In Aia -
addition, the RMSE is approximately 49.3% of the standard Vaeviink - -
deviation, indicating that the model achieved prediction errors Nsegmidate +—
smaller than the inherent variability in the data. Paen i
NTLEQT
To analyze the contribution of the input features to the A i
model’s predictions, a SHapley Additive exPlanations (SHAP) Moo l
. . wtc,medium
analysis was performed. SHAP is a method based on game N +
. . . stopped
theory that quantitatively evaluates each input feature’s con- N " t+
tribution. This allows key features in the prediction process to weeheary +

be visualized and interpreted. As shown in Fig. 12, the total
route length (Rjengen), the number of aircraft on the route
(Nyoute), and the standard deviation of aircraft speed (Vge,)
were identified as the most influential factors that determine
the taxi out time.

This indicates that both the physical characteristics of the
route itself and the ground traffic conditions play a critical
role in taxi out time prediction. In addition, the total aircraft
on ground (NV,:) and the time of the day (7o) also made
significant contributions to the model’s decision process.

U ' v T T ' ' T Low
150 100 50 0 50 100 150 200

SHAP value (impact on model output)

Fig. 12: Feature importance analysis using SHAP values

B. Actual vs. Predicted Taxi Time Comparison

To evaluate the predictive performance of the model, the
relationship between actual and predicted taxi times was
analyzed. Figure 13 shows a scatter plot of the actual versus
predicted values for the entire test dataset. Most of the data



1000 S

800

600

Predicted Taxi Time (sec)

400

200

0 200 400 600 800 1000
Actual Taxi Time (sec)

Fig. 13: Actual vs. predicted taxi time

points are distributed near the diagonal line, indicating that the
proposed XGBoost model effectively learned the patterns of
the actual taxi times.

C. Analysis by Taxi Route
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As shown in Fig. 13, most of the predicted values closely

follow the actual values. However, when analyzing the pre-
diction performance on a route-by-route basis, variations in

model performance were observed. As shown in Fig. 14, each
bar represents a route, and consecutive bars of the same color
indicate alternate routes that share the same initial/final node
pair. While most routes achieved favorable R? scores, some
had values close to zero or even negative, indicating that the
model’s prediction for those routes was unstable.

Figure 15 shows the prediction errors for all 56 routes. It
can be observed that for most routes, the maximum predic-
tion errors did not exceed 50%, and the interquartile range
(25%-75%) remained within £20%, indicating that the model
maintained an overall stable prediction performance.

Figure 16 shows the route with the highest R? score.
Although both Figs. 16a and 16b show no unusual patterns
in the route geometry, the route in Fig. 16a is a departure on
a frequently used runway, resulting in a sufficient amount of
training data. In contrast, Fig. 16b corresponds to a route that
crosses another runway to depart at a runway that is primarily
used for arrivals, resulting in a limited amount of training data.
Moreover, since this route involves a runway crossing, it is
assumed that a combination of different operational factors
contributed to the larger error.

In particular, it was observed that this tendency became
more pronounced for routes with relatively fewer data sam-
ples. Figure 14b shows the number of data samples for
each route, where colors represent identical initial/final nodes
combinations. The results indicate that routes with fewer
data points tend to have lower prediction performance. For
example, routes with comparatively sufficient training data
consistently maintained R? scores around 0.5, while routes
with only a few hundred samples often had negative R? scores.
Nevertheless, even for some low-data routes, it was confirmed
that certain path options within the same initial/final pairs
achieved relatively higher R? scores.

Figure 17 shows the route-wise MAE and the mean absolute
percentage error (MAPE). Even though the MAPE remains
below 20% in most cases, there were also cases where the
relative error was relatively high despite a high R? score,
which appears to be due to the nature of how the coefficient
of determination is calculated.

RZ2—1_ > (i — i)

> (Wi —7:)?

According to (5), the R? score evaluates the prediction

relative to the mean. Therefore, even if the prediction error

of the model is higher than in other routes, a high R? score

can still be achieved as long as the prediction is closer to the
actual value than the mean estimate.

(&)

D. Discussion

This study empirically demonstrates that it is possible to
rapidly predict an aircraft’s taxi out time based on information
available at the moment when the aircraft enters the initial
node combined with the historical statistics. By considering
not only static features such as route id, total distance, and
number of links, but also real-time traffic features such as the
number of aircraft on the route, adjacent traffic congestion,
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and average taxi speed, the sensitivity and adaptability of the
model were significantly improved.

The SHAP-based analysis quantitatively interpreted the
influence of key features in the model’s decision-making

Fig. 16: Routes with the largest and the smallest R? score ~ Process, providing valuable insights for future model im-
provement and airport management strategy development.

(b) Route with the smallest R? score



Meanwhile, route-by-route prediction analysis revealed that
routes with insufficient data or imbalanced features had lower
prediction stability. This result is attributed to a generalization
limitation caused by the training imbalance among the routes,
suggesting that future studies should consider data augmenta-
tion, integrated learning based on route clustering, or transfer
learning techniques to address this issue.

In addition, the current study was limited to taxiways where
routes are relatively well defined. Extending the predictive
model to ramp areas leading to taxiways is expected to allow
better scheduling and traffic control from the earliest stages of
ground movement.

VI. CONCLUSIONS

In this study, a model capable of predicting aircraft taxi
times using surface movement data from ICN was developed.
Based on the airport layout information, a node-link model
was constructed, and the surface movement data were prepro-
cessed to standardize the aircraft trajectory into a sequence
of nodes. In this process, the input features were designed by
comprehensively reflecting both the ground traffic conditions
observable at the initial time and the static characteristics of
the taxi route.

The predictive model applied the XGBoost algorithm, which
is based on gradient boosting and uses a variety of traffic-
related and route-specific features as input variables. The
model achieved a MAE of 63.06 seconds, a RMSE of 83.90
seconds, and a R? of 0.7516 on the test dataset. The MAE is
approximately 15.7% of the average taxi time, suggesting the
potential of the model for practical use in airport operations.

In addition, by applying SHAP analysis, key features
contributing to model predictions were identified, enabling
quantitative identification of factors that determine the taxi
times. This not only improves prediction accuracy, but also
provides actionable insights for airport management strategies
and ground traffic optimization.

Future research is expected to focus on improving the pre-
diction performance for routes with limited data, extending the
model to different airport environments, and further enhancing
the model by incorporating a wider range of features.
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